

From last time

Operation Counting

Constants

Big-O (loosely)

Today

Big-O (Precisely!)

So: you want to analyze an algorithm...

Let **T(n)** denote the running time of your algorithm on an input of size n.

Let **T(n)** denote the running time of your algorithm on an input of size n.

Which function is "faster"?

I.Analyze large N.

So, is
$$f(n)$$
 smaller than $g(n)$?

For "big enough" N

Give or take a constant

So, is f(n) smaller than g(n)?

For "big enough" N

Give or take a constant

Is
$$f(n) < g(n) \forall n^{\text{what we}}$$
 want?

So, is f(n) smaller than g(n)?

For "big enough" N

Give or take a constant

Is
$$f(n) < g(n) \forall n > n_0^{\text{what we want?}}$$

So, is f(n) smaller than g(n)?

For "big enough" N

Give or take a constant

$$f(n) < c \cdot g(n) \ \forall n > n_0$$

Your choice of constant.

Can be as large as you want!

If c and n_0 exist, we say $f(n) \in O(g(n))$

$$f(n) < c \cdot g(n) \ \forall n > n_0 \text{ means } f(n) \in O(g(n))$$

Let us know: http://goo.gl/VHT2q

$$f(n) < c \cdot g(n) \ \forall n > n_0 \text{ means } f(n) \in O(g(n))$$

$$f_0(n) = n$$

$$f_1(n) = n^2 + 10$$

$$f_2(n) = n!$$

$$f_3(n) = n \log n$$

$$f_4(n) = n^n$$

$$f_5(n) = n \log(n^2)$$

$$f_6(n) = \log n$$

$$f_7(n) = \frac{1}{10^6}n^3 + 10^6n^2 + 12n + 4$$

$$f_8(n) = n^2 \log n$$

$$f_9(n) = \sum_{i=1}^{n} i$$

$$f_{10}(n) = 2^n$$

$$f_{11}(n) = 3^n$$

Fill out our form: http://goo.gl/9vpuE

