

From last time

Operation Counting
Constants
Big-O (loosely)

Today

Big-O (Precisely!)

So: you want to analyze an algorithm...

$\mathrm{T}(\mathrm{n})$

Let (ص) denote the running time of your algorithm on an input of size n.

Which function is "faster"?

I.Analyze large N .

I.Analyze large N .

I.Analyze large N .
2. Ignore constants!

So, is $f(n)$ smaller than $g(n)$?

For "big enough" N
Give or take a constant

So, is $f(n)$ smaller than $g(n)$?

For "big enough" N
Give or take a constant

$$
{ }^{\text {s }} f(n)<g(n) \forall n,
$$

So, is $f(n)$ smaller than $g(n)$?

For "big enough" N
Give or take a constant

So, is $f(n)$ smaller than $g(n)$?

For "big enough" N
Give or take a constant

If c and n_{0} exist, we say $f(n) \in O(g(n))$

$$
f(n)<c \cdot g(n) \forall n>n_{0 \text { mens }} f(n) \in O(g(n))
$$

Let us know: http://goo.g//VHT2q
$f(n)<c \cdot g(n) \forall n>n_{0 \text { mens }}^{\operatorname{man}} f(n) \in O(g(n))$

$$
\begin{array}{lcc}
f_{0}(n)=n & f_{1}(n)=n^{2}+10 & f_{2}(n)=n! \\
f_{3}(n)=n \log n & f_{4}(n)=n^{n} & f_{5}(n)=n \log \left(n^{2}\right) \\
f_{6}(n)=\log n & f_{7}(n)=\frac{1}{10^{6}} n^{3}+10^{6} n^{2}+12 n+4 \\
f_{8}(n)=n^{2} \log n & f_{9}(n)=\sum_{i=1}^{n} i & f_{10}(n)=2^{n} \\
f_{11}(n)=3^{n} & &
\end{array}
$$

Fill out our form: http://goo.g//9vpuE

