Computer Science 201
Fall 2012
Midterm #1

Solutions

0

0.1 Instance Variables (3 points)

private String myName;
private int myAge;
private int myHashCode;

0.2 Constructor (3 points)

public LongNameFirst(String name, int age)
{

myName = name;

myAge = age;

computeHashCode () ;
}

0.3 compareTo (5 points)

public int compareTo(LongNameFirst other)

{
if (myName.length() > other.myName.length()) {
return -1;

}

if (myName.length() < other.myName.length()) {
return 1;

}

if (myAge < other.myAge) {
return -1;

}

if (myAge > other.myAge) {
return 1;

}

return O;

0.4 hashCode (3 points)

private void computeHashCode ()

{
// One possibiilty.
String temp = myName + myAge;
myHashCode = temp.hashCode();
}

public int hashCode()
{

return myHashCode;

}

0.5 equals (2 points)

public boolean equals(Object otherQObject)

{
if (otherObject == null) {
return false;

}

if (getClass() != otherObject.getClass())
return false;

LongNameFirst other = (LongNameFirst)otherObject;

return compareTo(other) == 0;

int x = 42;

void doSomething() {
System.out.println("Go!");

3

for (String i : v) {
System.out.println(i);
}

2

2.1 3 points
6 8 6

2.2 3 points
10 10 10

One point each.

3

3.1 Running Times
A

O(1), as it does constant work (returning) that’s independent of .

B

O(n), as generating result is O(1), iterating is O(n) as it does n/2 work,
and returning is constant.

C

O(n?), as the inner loop is O(n) (see B) and the outer loop is O(1).

D

O(n?). The first pair of loops is O(n?), and the second loop is O(n). Recall
that O(n?) + O(n) € O(n?).

E

O(y/n). Consider taking the square root of both sides of the while check.
In that case, the left-hand-side is growing linearly towards /7.

F
O(logn). Growing by powers of 2 is the very definition of log .

3.2 Ordering
It's A-F—-E-B—(C, D). Note the tie.

4

I'd use modeTwo, as it has better big-O running time. Specifically, the two
nested loops in modeOne mean that it runs in O(n?) time. The use of the
HashMap in modeTwo means that it runs in O(n) time, which is far better,
particularly on large inputs.

5 7 points

Basically a copy-and-paste of the code from the previous question. Note
that the details of the helper method are, in fact, irrelevant.

6

public ArrayList<String> computeUniqueWords(ArrayList<String> words) {
ArrayList<String> result = new ArrayList<String>();
result.add(words.get(0));
for (int i = 1 ; i < words.length ; ++i) {
if (!result.get(result.size() - 1).equals(words[i])) {
result.add(words[i]);
}
}
return result;

¥

7 10 points

public static boolean areMatched(String s) {
if (s.length() == 0) {
return true;

}
if (s.length() == 1) {
return false;
}
boolean paren =
s.charAt(0) == ’(’ && s.charAt(s.length() - 1) == ’)’;

boolean brace =
s.charAt(0) == ’{’ && s.charAt(s.length() - 1) == ’}’;

if (!(paren || brace))
return false;

return areMatched(s.substring(l, s.length() - 1));

10

