Process, Pointers, and
Heap Manager

COMPSCI210 Recitation
31 Aug 2012
Vamsi Thummala

Agenda

Process
Macros/Pointers in C
Manipulating and casting pointers

Heap Manager: Dynamic memory
allocation

Operating Systems: The Classical View

Programs Each process
run as has a private
independent virtual address
processes. mn /o = /= — / = space and one
or more
threads.
Protected ...and upcalls
system calls (e.qg., signals)
Protected OS Threads
kernel enter the
mediates 0 0 0 kernel for
access to OS
shared services.
resources.

The kernel code and data are protected from untrusted processes.

Block Diagram of the System Kernel

User programs

1 \
libraries
trap
User Level ... T
Kernel Level v v
A System call interface ¢
+ File subsystem v | Inter-
€ SuDSysIe v * pProcess
3y communicat
Buffer cachea procesls jon
{ : squC;r;Ztoem scheduler
__Character block ¥ Memory
¢ Device drivers managemen
J t
Hardware control

Hardware Level

Key Concepts for Classical OS
r— kernel

* The software component that controls the hardware
directly, and implements the core privileged OS functions.

* Modern hardware has features that allow the OS kernel to
protect itself from untrusted user code.

thread

* An executing instruction path and its CPU register state.

virtual address space

* An execution context for thread(s) defining a name space
for executing instructions to address data and code.

process

* An execution of a program, consisting of a virtual address
space, one or more threads, and some OS kernel state.

Parts of a process

0 Thread
I Sequence of executing instructions
" Active: does things

" Address space

" Data the process uses as it runs
" Passive: acted upon by threads

Duke Systems

Play analogy

U Process is like a play
performance

'Program Is like the play’s script
the » & ﬂ-readﬁ

threads?

What is

the
address
space?

e Systems

What is in the address
space?

0 Program code
] Instructions, also called “text”

= Data segment

= Global variables, static variables

 Heap (where “new” memory comes from)
= Stack
= Where local variables are stored

Duke Systems

Review: Address Space Layout

7EEFFE]
0 Stack segment

Dynamic data

Data segment
Static data

0x10000000

Text segment

0x400000

cps-104 Lecture-11.9 ©GK Fall 2010

Running a program

code
constants
Initialized data
Imports/exports
symbols
types/interfaces

When a program launches, the OS platform
allocates memory to store its code and data.
It may establish a new context and/or thread.

The Birth of a Program (C/Ux)

myprogram.c

int j;

}

char* s = “hello\n™

int p() {

] = write(l, s, 6);
return(j);

!

—

assembler ‘

store this
store that
push

jsr _write
ret

etc.

myprogram.s

myprogram.o
object
file

| 1=

libraries
and other
5 program

objects
myprogram
(executable file)

What’s in an Object File or Executable?

A 4

Header “magic number”
indicates type of image.

Section table an array

»
»

of (offset, len, startVA)

program sections

A 4

Used by linker; may \

be removed after final
link step and strip.

Y

symbol
table

relocation
records

program instructions

P

immutable data (constants)

“hello\n”

writable global/static data

i, S ,p,sbuf

S

int j = 327,
char* s = “hello\n”;
char sbuf[512];

int p() {
intk = 0;
] = write(1, s, 6);
return(j);

A Peek Inside a Running Program

CPU

RO

/ heap“:%‘

Rn

PC —

SP—¥
registers

E\-L—
high

“‘memory”

address space
(virtual or physical)

An Execution Context

* The state of the CPU associated with a thread of control (process)
* general purpose registers (integer and floating point)
* status registers (e.g., condition codes)
* program counter, stack pointer
* Need to be able to switch between contexts
* timesharing: sharing the machine among many processes

* petter utilization of machine (overlap I/O of one process with
computation of another)

* different modes (Kernel v.s. user)
* Maintained by operating system

CPS104 Lec26.14 ©GK Fall 2010

Process Context: A Closer Look

high <rack

heap
bss unitinialized variables
data initialized variables

0 et instmaction

“Classic Linux Address Space”

-
1GB *f Kernel space
\ AxcoBRaeed == TASK S5I7ZE
- Stack

g

T

Memory Mapping Region Bx 40600800

N

Heap
BSS segment
Data Segment

Text Segment (ELF) AxPREBARARA
- (5]

http://duartes.org/gustavo/blog/category/linux

http://duartes.org/gustavo/blog/category/linux

How to allocate memory from
heap?

Parking with differently sized cars along a street with
no marked parking space dividers.

Wasted
space from
external

fragmentation

How to allocate memory from
heap?

Parking with differently sized cars along a street with
fixed parking space dividers.

Wasted space from
Internal fragmentation

The Programming C Guru's
(Ken Thompson&
Dennis Ritchie)

Unix: A Lasting Achievement?

“Perhaps the most important achievement of Unix is to
demonstrate that a powerful operating system for
Interactive use need not be expensive...it can run on
hardware costing as little as $40,000.”

The UNIX Time-Sharing System*
D. M. Ritchie and K. Thompson
1974

DEC PDP-11/24

http://histoire.info.online.fr/pdp11.html

Macros in C

Macros

Runtime, compile-time, or pre-compile time?
Constant:

#define WORD_SIZE 4

OK

Macro

#define DWORD(Xx) 2*X

° Not OK

° DWORD(x+1) becomes 2*x+1
#define DWORD(Xx) (2*(x))

° OK

Use lots of parenthesis, it’s a naive search-and-replace!

Macros

Why macros?

“Faster” than function calls
* Why?

For malloc

* Quick access to header information (payload size, valid)

What's the keyword inline do?

At compile-time replaces “function calls” with code

Pointers in C

C operators (K&R p. 53)

Operators Associativity

O [J -= . left to right
I~ ++ -- + - * & (type) sizeof right to left
* /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
?: right to left
= += -= *= /= %= &= N= I= <<= >>= right to left
, left to right

Note: Unary +, -, and * have higher precedence than binary forms

int

int

int

int

int

int

int

int

int

Review of C Pointer Declarations
(K&R section 5.12)

P

*p[13]

*(p[13])

wx

(*p)[13]

()

(") ()
(*(*f())[13])()

(*(*x[3]1)())[5]

p is a pointer to int
p is an array[13] of pointer to int
p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

X IS an array[3] of pointers to functions
returning pointers to array[5] of ints

Pointer casting, arithmetic,
and dereferencing

Pointer casting

Separate from non-pointer casting
float to int, int to float

* ok
struct_a to struct b

* gcc throws an error

Cast from
<type a> * to <type b> *
<type_a> * to integer/ unsigned int

integer/ unsigned int to <type a> *

Pointer casting

What actually happens in a pointer
cast?

Nothing! It's just an assignment.

Remember all pointers are the same
size.

The magic happens in dereferencing
and arithmetic

Pointer arithmetic

The expression ptr + a doesn’t
always evaluate 1nto the
arithmetic sum of the two

consider:
<type_a> * polinter = ..;
(void *) pointer2 = (void *) (pointer + a),

Pointer arithmetic

int * ptr = (int *)0x12341234,
int * ptr2 = ptr + 1;

char * ptr = (char *)0x12341234,
char * ptr2 = ptr + 1;

int * ptr = (1nt *)0x12341234,;
int * ptr2 = ((int *) (((char *) ptr) + 1));

void * ptr = (char *)0x12341234,
void * ptr2 = ptr + 1;

void * ptr = (int *)0x12341234,
void * ptr2 = ptr + 1;

Pointer arithmetic

int * ptr = (int *)0x12341234;
int * ptr2 = ptr + 1; //ptr2 is 0x12341238

char * ptr = (char *)0x12341234;
char * ptr2 = ptr + 1; //ptr2 is 0x12341235

int * ptr = (int *)0x12341234,
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341235

volid * ptr = (char *)0x12341234;
void * ptr2 = ptr + 1; //ptr2 1is 0x12341235

void * ptr = (int *)0x12341234;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341235

More pointer arithmetic

int ** ptr
int * ptr2

(1nt **)0x12341234;
(1nt *) (ptr + 1);

char ** ptr = (char **)0x12341234,
short * ptr2 = (short *) (ptr + 1);

int * ptr = (int *)0x12341234,
void * ptr2 = &ptr + 1;

int * ptr = (int *)0x12341234;
void * ptr2 = ((void *) (*ptr + 1));

This i1s on a 64-bit machine!

More pointer arithmetic

int ** ptr
int * ptr2

(1nt **)0x12341234;
(int *) (ptr + 1); //ptr2 = 0x1234123c

char ** ptr = (char **)0x12341234,
short * ptr2 = (short *) (ptr + 1);
//ptr2 = 0x1234123c

int * ptr = (int *)0x12341234;

void * ptr2 = &ptr + 1; //ptr2 = ??

//ptr2 is actually 8 bytes higher than the address of
the variable ptr

int * ptr = (1int *)0x12341234,;

void * ptr2 = ((void *) (*ptr + 1)), //ptr2 = 22
//ptr2 1is just one higher than the value at
0x12341234 (so probably segfault)

Pointer dereferencing

Basics

It must be a POINTER type (or cast to
one) at the time of dereference

Cannot dereference (void *)

The result must get assigned into the
right datatype (or cast into it)

Pointer dereferencing

What gets “returned?”

int * ptrl = malloc(100),
*ptrl = Oxdeadbeef,

int vall = *ptril;
int val2 = (int) *((char *) ptrl);

What are vall and val2?

Pointer dereferencing

What gets “returned?”
int * ptrl = malloc(sizeof(int));
*ptrl = Oxdeadbeef;
int vall = *ptri;
int val2 = (int) *((char *) ptrl);
// vall = 0Oxdeadbeef;
// val2 = oxffffffef;
What happened??

Heap Manager

Dynamic memory allocation

Terms you will need to know

malloc / calloc / realloc

free

sbrk

payload

fragmentation (internal vs. external)
coalescing

Bi-directional

Immediate vs. Deferred

Design considerations

| found a chunk that fits the necessary payload... should | look for a better fit
or not?

Splitting a free block:

void* ptr = malloc(200),
free(ptr);

ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

void* ptr = malloc(200),
free(ptr);

ptr = malloc(192);//use same space, then “mark” remaining
bytes as free??

Carnegie Mellon

Allocation Example

pl = malloc(4)

malloc (5)

'O
ha
|

p3 = malloc(6)

free (p2)

P4 = malloc(2)

Fragmentation

Internal fragmentation

Result of payload being smaller than
block size.

void * ml1l = malloc(3); void * ml1l = malloc(3);

ml,m2 both have to be aligned to 8 bytes..

External fragmentation

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)

p2 = malloc(3)

pP3 = malloc(6)
free (p2)
pd = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests

B Thus, difficult to measure

Implementation Hurdles

How do we know where the chunks are?
How do we know how big the chunks are?
How do we know which chunks are free?

Remember: can’t buffer calls to malloc and free... must deal with them real-
time.

Remember: calls to free only takes a pointer, not a pointer and a
size.

Solution: Need a data structure to store information on the
“chunks”

Where do I keep this data structure?

The data structure

Requirements:

The data structure needs to tell us where the chunks are, how big they are,
and whether they’re free

We need to be able to CHANGE the data structure during calls to malloc and
free

We need to be able to find the next free chunk that is “a good fit for” a given
payload

We need to be able to quickly mark a chunk as free/allocated
We need to be able to detect when we’re out of chunks.

* What do we do when we're out of chunks?

The data structure

It would be convenient if it worked like:

malloc_struct malloc_data_structure;

ptr = malloc(100, &malloc_data_structure);
free(ptr, &malloc_data_structure);

Instead all we have is the memory we’re giving out.

All of it doesn’t have to be payload! We can use
some of that for our data structure.

The data structure

The data structure IS your memory!
A start:
<hl> <pll> <h2> <pl2> <h3> <pl3>
What goes in the header?
 That's your job!

Lets say somebody calls free(p2), how
can | coalesce?

 Maybe you need a footer? Maybe not?

The data structure

Common types
Implicit List

* Root -> chunkl -> chunk2 -> chunk3 -> ...
Explicit List

« Root -> free chunk 1 -> free chunk 2 -> free chunk 3 ->

Segregated List

* Small-malloc root -> free small chunk 1 -> free small
chunk 2 -> ...

* Medium-malloc root -> free medium chunk 1 -> ...

* Large-malloc root -> free large chunkl -> ...

Design considerations

Free blocks: address-ordered or LIFO or
FIFO

What's the difference?

Pros and cons?
What are the efficiency tradeoffs?

	Slide 1
	Agenda
	Operating Systems: The Classical View
	Slide 4
	Key Concepts for Classical OS
	Parts of a process
	Play analogy
	What is in the address space?
	Review: Address Space Layout
	Running a program
	The Birth of a Program (C/Ux)
	What’s in an Object File or Executable?
	A Peek Inside a Running Program
	 An Execution Context
	Process Context: A Closer Look
	“Classic Linux Address Space”
	Variable Partitioning
	Fixed Partitioning
	Slide 19
	Unix: A Lasting Achievement?
	Slide 21
	Macros
	Macros
	Slide 24
	C operators (K&R p. 53)
	Review of C Pointer Declarations
(K&R section 5.12)
	Slide 27
	Pointer casting
	Pointer casting
	Pointer arithmetic
	Pointer arithmetic
	Pointer arithmetic
	More pointer arithmetic
	More pointer arithmetic
	Pointer dereferencing
	Pointer dereferencing
	Pointer dereferencing
	Slide 38
	Malloc basics
	Design considerations
	Slide 41
	Fragmentation
	Slide 43
	Implementation Hurdles
	The data structure
	The data structure
	The data structure
	The data structure
	Design Considerations

