Systems@Google

Vamsi Thummala
Slides by Prof. Cox

DeFiler FAQ

 Multiple writes to a dFile?

* Only one writer at a time is allowed

 Mutex()/ReaderWriterLock() at a dFile

« read()/write() always start at beginning of the dFile (no seeking).

e Size of a inode

Okay to assume fixed size but may not be a good idea to
assume the size of a inode == block size

256 bytes can hold 64 pointers => at least 50 blocks after
metadata (satisfies the requirement)

Simple to implement as a linked list

- Always the last pointer is reserved for indirect block
pointer

DeFiler FAQ

* Valid status?
ReadBlock() {
getBlock(); // returns DBuffer for the block

/* check the contents, the buffer may be associated with
other block earlier and the contents are invalid */

if (checkValid())
return buffer;

else startFetch();

wait for ioComplete();

return buffer;

}

DeFiler FAQ

* You may not use any memory space other than the DBufferCache

« FreeMap + Inode region + Data blocks all should reside in
DBufferCache space

* You can keep the FreeMap + Inode region in memory all the
time

* Just have an additional variable called “isPinned” inside
DBuffer.

« Synchronization: Mainly in DBufferCache, i.e, getBlock() and
releaseBlock()

* You need a CV or a semaphore to wakeup the waiters
* Only a mutex need at a DFS level
« No synchronization at the VirtualDisk level

A queue is enough to maintain the sequence of requests

A brief history of Google

1996

4 disk drives
24 GB total storage

A brief history of Google

44 disk drives
366 GB total
storage

A brief history of Google

Google:
2003

15,000 machines
? PB total storage

A brief history of Google

45 containers x 1000 servers x 36 sites

i ~ 1.6 million servers (lower bound)

<, {'.(‘:'f- P

per shipping

; W 1
o T,
Rl
PAD.
- Tryy) ”DI:IE]
o MS 4 S8
L - North

Min 45 containefs/data center

Google design principles

 Workload: easy to parallelize

 Want to take advantage of many processors,
disks

* Why not buy a bunch of
supercomputers?

* Leverage parallelism of lots of (slower) cheap
machines

* Supercomputer price/performance ratio is poor

* What is the downside of cheap
hardware?

What happens on a query?

http://www.google.com/search?

q=duke

http://64.233.179.104/search?

qg=duke GOOSIQ
Google

What happens on a query?

http://64.233.179.104/search?
q=duke
GO()SIQ“ Spell Checker

Index Servers Document Servers
(TB) (TB)

Google hardware model|

* Google machines are cheap and likely
to fail

* What must they do to keep things up
and running?

e Store data in several places (replication)

* When one machine fails, shift load onto ones
still around

* Does replication get you anything
else?

 Enables more parallel reads

Fault tolerance and performance

* Google machines are cheap and likely
to fail

e Does it matter how fast an individual
machine is?

e Somewhat, but not that much

* Parallelism enabled by replication has a bigger
iImpact

* Any downside to having a ton of
machines?

* Space

Fault tolerance and
performance

* Google machines are cheap and likely
to fail

 Any workloads where this wouldn’t
work?

e Lots of writes to the same data

* Web examples? (web is mostly read)

Google power consumption

A circa 2003 mid-range server

* Draws 90 W of DC power under load

e 55 W for two CPUs
e 10 W for disk drive
e 25 W for DRAM and motherboard

« Assume 75% efficient ATX power
supply
« 120 W of AC power per server
* 10 kW per rack

Google power consumption

* A server rack fits comfortably in 25
ft2

 Power density of 400 W/ ft2
* Higher-end server density = 700 W/ ft2

 Typical data centers provide 70-150
W/ ft2

* Google needs to bring down the power density

* Requires extra cooling or space

 Lower power servers?

* Slower, but must not harm performance

 Lines of code
e XP: 40 million
e Linux 2.6: 6 million

* (mostly driver code)

OS Complexity

 Sources of complexity

e Mu

e Mu
fau

tip
tip

ts)

e instruction streams (processes)

e interrupt sources (1/0O, timers,

Complexity in Google
 Consider the Google hardware

model

 Thousands of cheap, commodity
machines

* Why is this a hard programming
environment?

* Speed through parallelism (concurrency)

e Constant node failure (fault tolerance)

Complexity in Google

Google provides abstractions to make
programming easier.

Abstractions in Google

Google File System

* Provides data-sharing and durability

Map-Reduce

 Makes parallel programming easier

BigTable

* Manages large relational data sets

Chubby

e Distributed locking service

Problem: lots of data

Example:

e 20+ billion web pages x 20KB = 400+
terabytes

One computer can read 30-35 MB/sec
from disk

~four months to read the web

~1,000 hard drives just to store the
web

Even more to do something with the
data

Solution: spread the load

« Same problem with 1,000 machines, < 3 hours

* Bad news: programming work
« Communication and coordination
 Recovering from machine failures
e Status reporting
 Debugging and optimizing
 Workload placement

* Bad news Il: repeat for every problem

Machine hardware reality

* Multiple cores
 2-6 locally-attached disks
« 2TB to ~12 TB of disk

 Typical machine runs

e GFS chunkserver

e Scheduler daemon for user tasks

* One or many tasks

Machine hardware reality

* Single-thread performance doesn’t
matter

e Total throughput/$ more important than peak
perf.

e Stuff breaks

* One server may stay up for three years (1,000
days)

* |If you have 10,000 servers, expect to lose
10/day

* |If you have 1,000,000 servers, expect to lose
1,000/day

Google hardware reality

Google storage

* “The Google File System”
 Award paper at SOSP in 2003

“Spanner: Google's Globally
distributed datastore”

 Award paper at OSDI in 2012
* If you enjoy reading the paper

e Sign up for COMPSCI 510 (you’ll read lots of
papers like it!)

Google design principles

* Use lots of cheap, commodity hardware

* Provide reliability in software

* Scale ensures a constant stream of failures
— 2003: > 15,000 machines
- 2007: > 1,000,000 machines
- 2012: > 10,000,0007?

* GFS exemplifies how they manage failure

Sources of faillure

 Software
* Application bugs, OS bugs
* Human errors
* Hardware
* Disks, memory
* Connectors, networking

* Power supplies

Design considerations

1. Component failures

2. Files are huge (multi-GB files)
* Recall that PC files are mostly small

* How did this influence PC FS design?

 Relatively small block size (~KB)

Design considerations

1. Component failures
2. Files are huge (multi-GB files)

3. Most writes are large, sequential
appends

 Old data is rarely over-written

> W N

Design considerations

Component failures
Files are huge (multi-GB files)
Most writes are large, sequential appends

Reads are large and streamed or small and random

Once written, files are only read, often sequentially

e Is this like or unlike PC file systems?

 PC reads are mostly sequential reads of small files

« How do sequential reads of large files affect client
caching?

 Caching is pretty much useless

Design considerations

Component failures

Files are huge (multi-GB files)

Most writes are large, sequential appends

Reads are large and streamed or small and random

Design file system for apps that use it

Files are often used as producer-consumer queues

100s of producers trying to append concurrently

Want atomicity of append with minimal synchronization

Want support for atomic append

o un & W N

Design considerations

Component failures

Files are huge (multi-GB files)

Most writes are large, sequential appends

Reads are large and streamed or small and random
Design file system for apps that use it

High sustained bandwidth better than low latency

* What is the difference between BW and latency?

« Network as road (BW = # lanes, latency = speed limit)

Google File System (GFS)

 Similar API to POSIX

 Create/delete, open/close, read/write
 GFS-specific calls

* Snapshot (low-cost copy)

 Record append

e (allows concurrent appends, ensures atomicity of each
append)

* What does this description of record append mean?
* Individual appends may be interleaved arbitrarily

« Each append’s data will not be interleaved with another’s

GFS architecture

 Key features:
 Must ensure atomicity of appends
 Must be fault tolerant

* Must provide high throughput through
parallelism

GFS architecture

* Cluster-based
* Single logical master

 Multiple chunkservers

* Clusters are accessed by
multiple clients

* Clients are commodity Linux machines

e Machines can be both clients and
servers

GFS architecture

Application

(file name, chunk index) -

GFS client

{chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master

File namespace

w (Too/bar
" |chunk 2ef0

.r-'

Y

[nstructions to chunkserver

Chunkserver state

Legend:
mmmp Data messages
— Control messages

chunk data

GFS chunkserver GFS chunkserver

Linux file system Linux file system

[Py Py p

File data storage

Files are broken into fixed-size chunks
Chunks are named by a globally unique ID
* |ID is chosen by the master

* ID is called a chunk handle

Servers store chunks as normal Linux files

Servers accept reads/writes with handle +
byte range

File data storage

* Chunks are replicated at 3 servers

* What are the advantages of
replication?

* Better availability (if one fails, two left)

* Better read performance (parallel reads)

File data storage

Chunks are replicated at 3 servers
* Using more than three would waste resources
If 4 machines try to be replicas
* First 3 should be allowed, 4th should be denied
How does this look like a synchronization problem?
* Can think of “acting as a chunk’s replica” as critical section
* Only want three servers in that critical section
How did we solve this kind of problem previously?

 Semaphores or locks/CVs

Ensure that max of 3 threads in critical section

Server () {

Lock 1;
int num_replicas=0;

Server () {
1.lock ();
1f (num_replicas < 3) {
num_replicas++;
1.unlock ();

while (1) {
// do server things

}

1.lock ();
num_replicas--;

¥
1.unlock ();

// do something else

}

File data storage

* Chunks are replicated at 3 servers

* Using more than three would waste resources

* Why wouldn’t distributed locking be a
good idea?

 Machines can fail holding a lock

e Responsibility for chunk cannot be re-assigned

Lock 1;
int num_replicas=0;

Server () {
1.lock ();
i1f (num_replicas < 3) {
num_replicas++;
1.unlock ();

while (1) {
// do server things
}

1.lock ();
num_replicas--;

}
1.unlock ();

// do something else

}

File data storage

Chunks are replicated at 3 servers
Instead: servers lease right to serve a chunk
* Responsible for a chunk for a period of time
* Must renew lease before it expires
How does this make failure easier to handle?
* |If a node fails, its leases will expire
« When it comes back up, just renew leases
What has to be synchronized now between replicas/master?
— Time: need to agree on when leases expire
How do we ensure that time is synchronized between machines?
 Only need a rough consensus (order of seconds)
e Can use protocol like NTP

* Spanner is clever: Uses GPS for atomic timestamps

File meta-data storage

 Master maintains all meta-data
* Namespace info
* Access control info
* Mapping from files to chunks

e Current chunk locations

Other master responsibilities

Chunk lease management
Garbage collection of orphaned chunks

* How might a chunk become orphaned?

 If a chunk is no longer in any file

Chunk migration between servers

HeartBeat messages to chunkservers

Client detalls

* Client code is just a library
 Similar to File class in java
 Caching

* No in-memory data caching at the client or
servers

* Clients still cache meta-data

Master design issues

* Single (logical) master per cluster

Master’s state is actually replicated elsewhere

Logically single because client speaks to one
name

Where else have we seen this?

Client communication with Google
Request sent to google.com

Use DNS tricks to direct request to nearby machine

Master design issues

* Single (logical) master per cluster
 Master’s state is actually replicated elsewhere

* Logically single because client speaks to one
name

* Use DNS tricks to locate/talk to a master
* Pros

* Simplifies design

 Master endowed with global knowledge

* (makes good placement, replication decisions)

Master design issues

 Single (logical) master per cluster

Master’s state is actually replicated elsewhere

Logically single because client speak to one name

e Cons?

Could become a bottleneck
(recall how replication can improve performance)
How to keep from becoming a bottleneck?

Minimize its involvement in reads/writes
Clients talk to master very briefly

Most communication is with chunkservers

Example read

Application . .
PP (file name, chunk index)

o

GFS client |

{chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master

File namespace

r,

- {ffoo/bar

chunk 2ef0

Y

[nstructions to chunkserver

Chunkserver state

Legend:
mmmp Data messages
— Control messages

chunk data

GIFS chunkserver

GI'S chunkserver

Linux file system

Linux file system

=le

=

Client uses fixed size chunks to compute chunk index

within a file

Example read

Application . .
PP (file name, chunk index)

GFS client |

{chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master

File namespace

r,

- {ffoo/bar

chunk 2ef0

Y

[nstructions to chunkserver

Chunkserver state

Legend:
mmmp Data messages
— Control messages

chunk data

GIFS chunkserver

GI'S chunkserver

Linux file system

Linux file system

=le

=

e Client asks master for the chunk handle at index i of

the file

Example read

Application

(file name, chunk index GFS master _~ /foo/bar
T 1 . & ~ - Paf
GFS client i File namespace ' chunk 2ef0

{chunk handle,
chunk locations)

Legend:
mmmp Data messages
] _) . e
Instructions to chunkserver = Control messages
Chunkserver state
(chunk handle, byte range) 1 ¥)
GIFS chunkserver GI'S chunkserver

chunk data

Linux file system Linux file system

P P ey

Master replies with the chunk handle and list of
replicas

Example read

Application

{chunk handle,
chunk locations)

(chunk handle, byte range)

(file name, chunk index
GFS client

GFS master

File namespace

r,

- {ffoo/bar

chunk 2ef0

Y

[nstructions to chunkserver

Chunkserver state

Legend:
mmmp Data messages
— Control messages

chunk data

GIFS chunkserver

GI'S chunkserver

Linux file system

Linux file system

=le

=

* Client caches handle and replica list

* (maps filename + chunk index 2> chunk handle +

replica list)

Example read

Application

{chunk handle,
chunk locations)

(chunk handle, byte range)

(file name, chunk index
GFS client

GFS master

File namespace

r,

- {ffoo/bar

chunk 2ef0

Y

[nstructions to chunkserver

Chunkserver state

Legend:
mmmp Data messages
— Control messages

chunk data

GIFS chunkserver

GI'S chunkserver

Linux file system

Linux file system

=le

=

Client sends a request to the closest chunk server

Server returns data to client

Example read

Application , , A e et .
PP (file name, chunk index GFS master .~ [foo/bar
LR = . ,-" ~ "}
GFS client File namespace chunk Zef0
{chunk handle,
chunk locations) !
‘ Legend:
mmmp Daia messages
i . A . .
Instructions to chunkserver . Control messages
Chunkserver state
(chunk handle, byte range) 1 ¥ !
GIFS chunkserver GFS chunkserver

chunk data

Linux file system Linux file system

P~ B

e Can you think of any possible optimizations?
* Could ask for multiple chunk handles at once (batching)

e Server could return handles for subsequent indices (pre-fetching)

Chunk size

- Recall how we chose block/page size?

« What are the disadvantages of small/big chunks?
 If too small, too much storage used for meta-data
* If too large, too much internal fragmentation

* Impact of chunk size on client’s meat-data caching?

. Data chunks are not cached (so no impact there)

* Large chunks =2 less meta-data/chunk
. Clients can cache more meta-data at clients
. Masters can fit all meta-data in memory

. Much faster than retrieving from disk

Chunk size

Recall how we chose block/page sizes

What are the disadvantages of small/big chunks?
If too small, too much storage used for meta-data

If too large, too much internal fragmentation

What is a reasonable chunk size then?

Big?

They chose 64 MB

Reasonable when most files are many GB

P wN K

Master’s state

File and chunk namespaces
Mapping from files to chunks

Chunk replica locations

. All are kept in-memory

* 1. and 2. are kept persistent

* Use an operation log

Operation log

Historical record of all meta-data updates
Only persistent record of meta-data updates
Replicated at multiple machines
* Appending to log is transactional
* Log records are synchronously flushed at all replicas
« To recover, the master replays the operation log
What this means for master performance
* State updates will be slow (order of 10s of ms)
Why is this OK?
 Updates to namespaces and chunk mappings are relatively infrequent

* Log writes not in critical path of data updates

Atomic record append

How are concurrent file writes conventionally treated?
 Concurrent writes to same file region are not serialized
* Region can end up containing fragments from many clients
Record _append
* Client only specifies the data to append
 GFS appends it to the file at least once atomically
* GFS chooses the offset
Why is this simpler than forcing clients to synchronize?
* Clients would need a distributed locking scheme
« GFS provides an abstraction, hides concurrency issues from clients
Where else have we seen Google hide synchronization?

« Map-Reduce programs

Mutation order

Mutations are performed at each
chunk’s replica

Master chooses a primary for each
chunk

 Others are called secondary replicas

Primary chooses an order for all
mutations

* Called “serializing”

All replicas follow this “serial” order

Example mutation

Client asks master
* Primary replica

* Secondary replicas

| Client

13

Secondary
Replica A

l

Primary
Replica

|

Secondary
Replica B

]

Master

Legend:

Example mutation

« Master returns 4 step |
» Client [Master
. . . 2
* Primary replica :
: Secondary |-
 Secondary replicas Replica A |—
! Primary [T :
— | Replica - "
l Legend:
6 — (Control
Secondary -)

Replica B

Example mutation

e Client sends data 4 step |
o Client |ﬁ Master

. 2
* To all replicas I3
= Secondary |-
- Replicas Replicas |
* Only buffer data) 1
Primary [T s
o — Replica. [2 :
Do not apply ﬁ 1 Legend:
* Ack client 6 —= Control
Secondary -)

Replica B

Example mutation

* Client tells primary 4 step |

Master

* Write request

L Secondary =
* |dentifies sent data Roplioa 4 :
* Primary replica) I
Primary [

* Assigns serial #s

Replic; -
—r’ Legend:
* Writes data locally ——= Control

Secondary —_— o

Replica B

]

 (In serial order)

Example mutation

* Primary replica 4 step |

Master

 Forwards request

* to secondaries Secondary |

Replicg A €
e Secondary replicas I

Primary
 Write data locally

Replic; -
—r’ Legend:
e (in serial order) — Control

Secondary —_— o

Replica B

]

Example mutation

* Secondary replicas 4 step |

Master

* Ack primary

Secondary =

Rephci_ﬂt €

Primary

Replic; -
I‘ Legend:
— Control

Secondary —) Data

Replica B

 Like “votes”

]

Example mutation

* Primary replica 4 step |

Master

e Ack client

Secondary =

Rephci_ﬂt €

Primary

Replic; -
I‘ Legend:
— Control

Secondary —) Data

Replica B

e Like a commit

]

Example mutation

 Errors? 4 step]

Master

* Require consensus

Secondary =

Rephci_ﬂt g

Primary

Replic; -
T’ Legend:
— (Control

Secondary —) Data

Replica B

* Just retry

]

Other approaches to
storage

* Distributed data structures
* Have seen some of this with the DNS tree
* Will now look at hash tables (i.e., DHTs)

* Distributed hash tables

* Provide the foundation for many key-value
stores

* Found in p2p systems, big cloud stores, etc.

Map-Reduce

 Widely applicable, simple way to
program

 Hides lots of messy details
* Automatic parallelization
* Load balancing
* Network/disk transfer optimization
 Handling of machine failures

e Robustness

Typical MapReduce problem

1.
2.

1.

Read a lot of data (TBs)
Map

— Extract something you care about from each record

. Shuffle and sort Map output

. Reduce

— Aggregate, summarize, filter or transform sorted
output

Write out the results

More specifically

* Programmer specifies two main
methods

e Map (k,v) 2 <k’, v'>*

* Reduce (k’, <v’>*) > <k’, v’'>*

 All v’ and k’ are reduced
together, in order

 Usually also specify

* Partition(k’, total partitions) -> partition for k'

* Often a simple hash of the key

Example

* Word frequencies in web pages

* Input = files with one

Key’=word
document/record Value’=count
Key=doc.URL Key’=word
Value=doc.conte—> Map - Va},ue’=count
nt
Key’=word

Keyr =t0”
Value’=“1"

Keyl=ll notll Keyl=lltoll |

Keyl — i bell

Key=“foo.com/filel”

Value=“to be or not = Map

to be”

Keyl — llorll
Value’=“1

Keyi=u be”
Value’=“1"

Example continued

MapReduce lib gathers all pairs with same key

— (shuffle and sort)

Reduce combines values for a key

Key’'="“be

\ W . | -

Key’'="“be

Value’=“1

Reduce

C4
114

| g |

Keyi — lltoll
Value’=“1

144

I‘v, -

Value’=“1

144

Reduce

—

Key’'="“be
!!alllel=ll2
Keyl=llor"

Key’'=“not

Value’=“1

114

Value’'=“2

144

Example pseudo-code

Map(String input_key, String input_value):
// 1input_key: document name
// input_value: document contents
for each word w in input_values:
EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
// key: a word, same for input and output
// intermediate_values: a 1list of counts
int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit (AsString(result));

Widely applicable at Google

* Implemented as a C++ library
* Linked to user programs

 Can read and write many data types

Example: query freq over time

u QUEF'BS C(:}ﬁta”'”r]g eClEpse EEEEEEEE NI NSNS NI NEEEEEE NN I EEEEEE QuerEeS CDﬂta|ﬁ|ng WDrld Seﬂes llllllllllllllllllll
ange LIl
1%0k Wi
1600 Eell)
1408 nn
2 L0 -IE 2
1udi i 2004
age %n
&R il])
w0k [11]
=0 | m
])
Queries containing “full moon” Queries containing “summer olympics”
2m M
168 361
188 o]
148 | . 1]
12 F. 1
E im S n
L] i 150
1] 12
4 1]
an i "
-]
Queries containing “watermelon Queries containing “Opteron
am0 n
aro 1]
40 o
aw L]
160]
E 180 S m
10 .]
0 e
&0 m
a0 1]

Example: [language model
stats

* Used in machine learning translation

* Need to count # of times every 5-word
seguence occurs

 Keep all those where count >=4

 Easy with MapReduce:

 Map: extract 5-word sequences - count from
document

e Reduce: combine counts, write out count if
large enough

Example: joining with other data

 Generate per-doc summary

* Include per-host info

 E.g., # of pages on host, important terms on host
- Easy with MapReduce:

* Map

e Extract hostname from URL
 Lookup per-host info

e Combine with per-doc data and emit
* Reduce

* Identity function (just emit key/value directly)

MapReduce architecture

* How is this implemented?

* One master, many workers
* |Input data split into M map tasks (64MB each)
 Reduce phase partitioned into R reduce tasks
 Tasks are assigned to workers dynamically

e Often: M=200,000: R=4,000: workers=2,000

MapReduce architecture

* Why is a single coordinator (master) nice?
 Reduces complexity

 Can monitor progress and status from one
logical place

* Why use multiple workers?
 Take advantage of parallelism
 Useful approach
* Centralize coordination

* De-centralize heavy lifting

MapReduce architecture

1. Master assigns each map to a free worker
 Considers locality of data to worker
 Worker reads task input (often from local disk)
 Worker produces R local files with k/v pairs

1. Master assigns each reduce task to a free
worker

 Worker reads intermediate k/v pairs from map
workers

 Worker sorts & applies user’'s Reduce op to get
output

Parallel MapReduce

! Partitioned |
:H :H :H output

(1) fork .

(1) foitk €1 fork
(2) assign
. assign reduce .
map
\wm'km'
vorke .
it (5) remote read WOTRET file O
split 2 |—(3) read L (4) local write__|
Split3 worker output
: file 1

split 4
[nput Map [ntermediate files Reduce Output

files phase (on local disks) phase files

MapReduce fault tolerance

* What is the downside of a centralized Master?
« Can become a single point of failure
« Worry about it becoming a performance bottleneck?
* Not really
 Master isn’t in the critical path for heavy lifting
e Just there to make sure everything runs smoothly
* How can we recover from a Master failure?
* Log state transformations to Google File System
« New master uses log to recover and continue

« Same idea as transactions covered in storage lectures

MapReduce fault tolerance

« How likely is master to fail?
* Not likely
e Individual machine can run for three years
* P(node failure)
* How likely is it that at least one worker will fail?

 Very likely

For N workers

1 - P(no nodes fail)

= 1 - (P(workerl doesn’t fail)*...*P(workerN doesn’t fail))
=1 - ((1-P(workerl failure))*... *(1-P(workerl failure)))

e =1-(1-P(node failure))™N
Failure exponentially more likely as N grows!!

MapReduce fault tolerance

e Worker failures handled via
re-execution

 On worker failure:
* Detect failure via periodic heartbeats

 Re-execute completed and in-progress map
tasks

« Re-execute in-progress reduce tasks

 Task completion committed through master

MapReduce performance

20000 - bone —— 20000 — Dune
o Done . rl
& 15000 r 15000 - } 1_.r>[}|J—|.H
< 10000 |“] — 10000 \
=S mm—J | so00 | | 5000 - |
= ; |
04— T i 04 0L | "ihulll' | T
. —— —— .
500 1000 s00 1000 500 1000
_ 20000 < 20000 o 20000 <
Wl
= 15000 15000 15000
-
o 10000 10000 10000
=] i
= 5000+ soon o A 5000 - /|
= . IIJ("‘ ". . /f‘ W\) / I\‘ . Pa -\ . A I.»f'ﬁ"\ .
T T — T T T T T T (VLY B B B — T T
500 1000 500 1000 Y500 1000
20000 20000 — 20000
é 15000 | 15000 15000 |
E 10000 | 10000 — 10000 —
B 5000 — .
S 5000 5000 | 4
~ 0 "Iniwm*'ﬁ\\] T ’II-\KTHTF‘?L‘- L 0 A J." \n%,««
L B T TT roTT T
500 1000 300 1000 500 1000
Seconds
Seconds cconds Seconds

(a) Normal execution (b) No backup tasks (¢) 200 tasks killed

Sort 10710 100-byte records (~1TB) in ~10.5 minutes.
50 lines of C++ code running on 1800 machines.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

