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DeFiler FAQ
• Multiple writes to a dFile?

• Only one writer at a time is allowed

• Mutex()/ReaderWriterLock() at a dFile

•   read()/write() always start at beginning of the dFile (no seeking).

• Size of a inode

• Okay to assume fixed size but may not be a good idea to 
assume the size of a inode == block size

• 256 bytes can hold 64 pointers => at least 50 blocks after 
metadata (satisfies the requirement)

• Simple to implement as a linked list

• Always the last pointer is reserved for indirect block 
pointer



DeFiler FAQ
• Valid status?

ReadBlock() {

getBlock(); // returns DBuffer for the block

/* check the contents, the buffer may be associated with 
other block earlier and the contents are invalid */

if (checkValid()) 

return buffer;

else startFetch();

wait for ioComplete();

return buffer;

}



DeFiler FAQ
• You may not use any memory space other than the DBufferCache

• FreeMap + Inode region + Data blocks all should reside in 
DBufferCache space

• You can keep the FreeMap + Inode region in memory all the 
time

• Just have an additional variable called “isPinned” inside 
DBuffer.

•   Synchronization: Mainly in DBufferCache, i.e,  getBlock() and        
    releaseBlock()

• You need a CV or a semaphore to wakeup the waiters

•  Only a mutex need at a DFS level

•  No synchronization at the VirtualDisk level

• A queue is enough to maintain the sequence of requests



A brief history of Google

BackRub: 
1996

4 disk drives 
24 GB total storage

=



A brief history of Google

Google: 
1998

44 disk drives 
366 GB total 

storage

=



A brief history of Google

Google: 
2003

15,000 machines
? PB total storage



A brief history of Google

1,160 servers per shipping 
container

            Min 45 containers/data center

45 containers x 1000 servers x 36 sites 
=
~ 1.6 million servers (lower bound) 



Google design principles
• Workload: easy to parallelize

• Want to take advantage of many processors, 
disks

• Why not buy a bunch of 
supercomputers?

• Leverage parallelism of lots of (slower) cheap 
machines

• Supercomputer price/performance ratio is poor

• What is the downside of cheap 
hardware?

• Lots of hardware failures

1. Use lots of cheap, commodity 
hardware

2. Provide reliability in software



What happens on a query? 

http://www.google.com/search?
q=duke

DNS

http://64.233.179.104/search?
q=duke



What happens on a query? 

http://64.233.179.104/search?
q=duke

Spell Checker

Ad Server

Document Servers 
(TB)

Index Servers 
(TB)



Google hardware model
• Google machines are cheap and likely 

to fail

• What must they do to keep things up 
and running?

• Store data in several places (replication)

• When one machine fails, shift load onto ones 
still around

• Does replication get you anything 
else?

• Enables more parallel reads

• Better performance

• Good since vast majority of Google traffic is 
reads



Fault tolerance and performance

• Google machines are cheap and likely 
to fail

• Does it matter how fast an individual 
machine is?

• Somewhat, but not that much

• Parallelism enabled by replication has a bigger 
impact

• Any downside to having a ton of 
machines?

• Space

• Power consumption

• Cooling costs



Fault tolerance and 
performance

• Google machines are cheap and likely 
to fail

• Any workloads where this wouldn’t 
work?

• Lots of writes to the same data

• Web examples? (web is mostly read)



Google power consumption
• A circa 2003 mid-range server

• Draws 90 W of DC power under load

• 55 W for two CPUs

• 10 W for disk drive

• 25 W for DRAM and motherboard

• Assume 75% efficient ATX power 
supply

• 120 W of AC power per server

• 10 kW per rack



Google power consumption
• A server rack fits comfortably in 25 

ft2

• Power density of 400 W/ ft2  

• Higher-end server density = 700 W/ ft2 

• Typical data centers provide 70-150 
W/ ft2

• Google needs to bring down the power density

• Requires extra cooling or space

• Lower power servers?

• Slower, but must not harm performance

• Depreciate faster, but must not affect 
price/performance



OS Complexity

• Lines of code

• XP: 40 million

• Linux 2.6: 6 million

• (mostly driver code)

• Sources of complexity

• Multiple instruction streams (processes)

• Multiple interrupt sources (I/O, timers, 
faults)

• How can we keep everything 
straight?



Complexity in Google

• Consider the Google hardware 
model

• Thousands of cheap, commodity 
machines

• Why is this a hard programming 
environment?

• Speed through parallelism (concurrency)

• Constant node failure (fault tolerance)



Complexity in Google

Google provides abstractions to make 
programming easier.



Abstractions in Google

• Google File System 

• Provides data-sharing and durability

• Map-Reduce

• Makes parallel programming easier

• BigTable

• Manages large relational data sets

• Chubby

• Distributed locking service



Problem: lots of data

• Example: 

• 20+ billion web pages x 20KB = 400+ 
terabytes

• One computer can read 30-35 MB/sec 
from disk

• ~four months to read the web

• ~1,000 hard drives just to store the 
web

• Even more to do something with the 
data



Solution: spread the load
• Good news

• Same problem with 1,000 machines, < 3 hours

• Bad news: programming work

• Communication and coordination

• Recovering from machine failures

• Status reporting

• Debugging and optimizing

• Workload placement

• Bad news II: repeat for every problem



Machine hardware reality

• Multiple cores

• 2-6 locally-attached disks

• 2TB to ~12 TB of disk

• Typical machine runs

• GFS chunkserver

• Scheduler daemon for user tasks

• One or many tasks



Machine hardware reality
• Single-thread performance doesn’t 

matter

• Total throughput/$ more important than peak 
perf.

• Stuff breaks

• One server may stay up for three years (1,000 
days)

• If you have 10,000 servers, expect to lose 
10/day

• If you have 1,000,000 servers, expect to lose 
1,000/day

• “Ultra-reliable” hardware doesn’t 
really help

• Scale trumps minor individual improvements

• Still have to deal with fault-tolerance in 
software



Google hardware reality



Google storage

• “The Google File System”

• Award paper at SOSP in 2003

•  “Spanner: Google's Globally  
distributed datastore”

• Award paper at OSDI in 2012

• If you enjoy reading the paper

• Sign up for COMPSCI 510 (you’ll read lots of 
papers like it!)



Google design principles
● Use lots of cheap, commodity hardware

● Provide reliability in software

● Scale ensures a constant stream of failures

– 2003: > 15,000 machines

– 2007: > 1,000,000 machines

– 2012: >  10,000,000?

● GFS exemplifies how they manage failure



Sources of failure

• Software

• Application bugs, OS bugs

• Human errors

• Hardware

• Disks, memory

• Connectors, networking

• Power supplies



Design considerations

1. Component failures

2. Files are huge (multi-GB files)

• Recall that PC files are mostly small

• How did this influence PC FS design?

• Relatively small block size (~KB)



Design considerations

1. Component failures

2. Files are huge (multi-GB files)

3. Most writes are large, sequential 
appends

• Old data is rarely over-written



Design considerations

1. Component failures

2. Files are huge (multi-GB files)

3. Most writes are large, sequential appends

4. Reads are large and streamed or small and random

• Once written, files are only read, often sequentially

• Is this like or unlike PC file systems?

• PC reads are mostly sequential reads of small files

• How do sequential reads of large files affect client 
caching?

• Caching is pretty much useless



Design considerations
1. Component failures

2. Files are huge (multi-GB files)

3. Most writes are large, sequential appends

4. Reads are large and streamed or small and random

5. Design file system for apps that use it

• Files are often used as producer-consumer queues

• 100s of producers trying to append concurrently

• Want atomicity of append with minimal synchronization

• Want support for atomic append



Design considerations
1. Component failures

2. Files are huge (multi-GB files)

3. Most writes are large, sequential appends

4. Reads are large and streamed or small and random

5. Design file system for apps that use it

6. High sustained bandwidth better than low latency

• What is the difference between BW and latency?

• Network as road (BW = # lanes, latency = speed limit)



Google File System (GFS)
• Similar API to POSIX

• Create/delete, open/close, read/write

• GFS-specific calls

• Snapshot (low-cost copy)

• Record_append

• (allows concurrent appends, ensures atomicity of each 
append)

• What does this description of record_append mean?

• Individual appends may be interleaved arbitrarily

• Each append’s data will not be interleaved with another’s



GFS architecture

• Key features:

• Must ensure atomicity of appends

• Must be fault tolerant

• Must provide high throughput through 
parallelism



GFS architecture

• Cluster-based

• Single logical master

• Multiple chunkservers

• Clusters are accessed by 
multiple clients

• Clients are commodity Linux machines

• Machines can be both clients and 
servers



GFS architecture



File data storage

• Files are broken into fixed-size chunks

• Chunks are named by a globally unique ID

• ID is chosen by the master

• ID is called a chunk handle

• Servers store chunks as normal Linux files

• Servers accept reads/writes with handle + 
byte range



File data storage

• Chunks are replicated at 3 servers

• What are the advantages of 
replication?

• Better availability (if one fails, two left)

• Better read performance (parallel reads)



File data storage
• Chunks are replicated at 3 servers

• Using more than three would waste resources

• If 4 machines try to be replicas

• First 3 should be allowed, 4th should be denied

• How does this look like a synchronization problem?

• Can think of “acting as a chunk’s replica” as critical section

• Only want three servers in that critical section

• How did we solve this kind of problem previously?

• Semaphores or locks/CVs

• Ensure that max of 3 threads in critical section



Server () {

}



Lock l;
int num_replicas=0;

Server () {
  l.lock ();
  if (num_replicas < 3) {
    num_replicas++;
    l.unlock ();

    while (1) {
      // do server things
    }
 
    l.lock ();
    num_replicas--;
  }
  l.unlock ();    
  // do something else
}



File data storage

• Chunks are replicated at 3 servers

• Using more than three would waste resources

• Why wouldn’t distributed locking be a 
good idea?

• Machines can fail holding a lock

• Responsibility for chunk cannot be re-assigned



Lock l;
int num_replicas=0;

Server () {
  l.lock ();
  if (num_replicas < 3) {
    num_replicas++;
    l.unlock ();

    while (1) {
      // do server things
    }
 
    l.lock ();
    num_replicas--;
  }
  l.unlock ();    
  // do something else
}

What 
happens if a 
thread fails 

in here?



File data storage
• Chunks are replicated at 3 servers

• Instead: servers lease right to serve a chunk

• Responsible for a chunk for a period of time

• Must renew lease before it expires

• How does this make failure easier to handle?

• If a node fails, its leases will expire

• When it comes back up, just renew leases

• What has to be synchronized now between replicas/master?

– Time: need to agree on when leases expire

• How do we ensure that time is synchronized between machines?

• Only need a rough consensus (order of seconds)

• Can use protocol like NTP

• Spanner is clever: Uses GPS for atomic timestamps



File meta-data storage

• Master maintains all meta-data

• Namespace info

• Access control info

• Mapping from files to chunks

• Current chunk locations



Other master responsibilities

• Chunk lease management

• Garbage collection of orphaned chunks

• How might a chunk become orphaned?

• If a chunk is no longer in any file

• Chunk migration between servers

• HeartBeat messages to chunkservers



Client details

• Client code is just a library

• Similar to File class in java

• Caching 

• No in-memory data caching at the client or 
servers

• Clients still cache meta-data



Master design issues

• Single (logical) master per cluster

• Master’s state is actually replicated elsewhere

• Logically single because client speaks to one 
name

• Where else have we seen this?

• Client communication with Google

• Request sent to google.com

• Use DNS tricks to direct request to nearby machine



Master design issues
• Single (logical) master per cluster

• Master’s state is actually replicated elsewhere

• Logically single because client speaks to one 
name

• Use DNS tricks to locate/talk to a master

• Pros

• Simplifies design

• Master endowed with global knowledge

• (makes good placement, replication decisions)



Master design issues
• Single (logical) master per cluster

• Master’s state is actually replicated elsewhere

• Logically single because client speak to one name

• Cons?

• Could become a bottleneck

• (recall how replication can improve performance)

• How to keep from becoming a bottleneck?

• Minimize its involvement in reads/writes

• Clients talk to master very briefly

• Most communication is with chunkservers



Example read

Client uses fixed size chunks to compute chunk index 
within a file



Example read

• Client asks master for the chunk handle at index i of 
the file



Example read

• Master replies with the chunk handle and list of 
replicas



Example read

• Client caches handle and replica list

• (maps filename + chunk index  chunk handle + 
replica list)



Example read

Client sends a request to the closest chunk server

Server returns data to client



Example read

• Can you think of any possible optimizations?

• Could ask for multiple chunk handles at once (batching)

• Server could return handles for subsequent indices (pre-fetching)



Chunk size
•   Recall how we chose block/page size?

•   What are the disadvantages of small/big chunks?

• If too small, too much storage used for meta-data

• If too large, too much internal fragmentation

• Impact of chunk size on client’s meat-data caching?

● Data chunks are not cached (so no impact there)

● Large chunks   less meta-data/chunk

● Clients can cache more meta-data at clients

● Masters can fit all meta-data in memory

● Much faster than retrieving from disk



Chunk size
Recall how we chose block/page sizes

What are the disadvantages of small/big chunks?

If too small, too much storage used for meta-data

If too large, too much internal fragmentation

What is a reasonable chunk size then?

Big? 

They chose 64 MB

Reasonable when most files are many GB



Master’s state

1. File and chunk namespaces

2. Mapping from files to chunks

3. Chunk replica locations

4. All are kept in-memory

● 1. and 2. are kept persistent

● Use an operation log



Operation log
• Historical record of all meta-data updates

• Only persistent record of meta-data updates

• Replicated at multiple machines

• Appending to log is transactional

• Log records are synchronously flushed at all replicas

• To recover, the master replays the operation log

• What this means for master performance

• State updates will be slow (order of 10s of ms)

• Why is this OK?

• Updates to namespaces and chunk mappings are relatively infrequent

• Log writes not in critical path of data updates



Atomic record_append
• How are concurrent file writes conventionally treated?

• Concurrent writes to same file region are not serialized

• Region can end up containing fragments from many clients

• Record_append

• Client only specifies the data to append

• GFS appends it to the file at least once atomically

• GFS chooses the offset

• Why is this simpler than forcing clients to synchronize?

• Clients would need a distributed locking scheme

• GFS provides an abstraction, hides concurrency issues from clients

• Where else have we seen Google hide synchronization?

• Map-Reduce programs



Mutation order

• Mutations are performed at each 
chunk’s replica

• Master chooses a primary for each 
chunk

• Others are called secondary replicas

• Primary chooses an order for all 
mutations

• Called “serializing”

• All replicas follow this “serial” order



Example mutation

• Client asks master

• Primary replica

• Secondary replicas 



Example mutation

• Master returns

• Primary replica

• Secondary replicas 



Example mutation

• Client sends data

• To all replicas

• Replicas

• Only buffer data

• Do not apply

• Ack client



Example mutation

• Client tells primary

• Write request

• Identifies sent data

• Primary replica

• Assigns serial #s

• Writes data locally

• (in serial order)



Example mutation

• Primary replica

• Forwards request

• to secondaries

• Secondary replicas

• Write data locally

• (in serial order)



Example mutation

• Secondary replicas

• Ack primary

• Like “votes”



Example mutation

• Primary replica

• Ack client

• Like a commit 



Example mutation

• Errors?

• Require consensus

• Just retry



Other approaches to 
storage

• Distributed data structures

• Have seen some of this with the DNS tree

• Will now look at hash tables (i.e., DHTs)

• Distributed hash tables

• Provide the foundation for many key-value 
stores

• Found in p2p systems, big cloud stores, etc.



Map-Reduce

• Widely applicable, simple way to 
program

• Hides lots of messy details

• Automatic parallelization

• Load balancing

• Network/disk transfer optimization

• Handling of machine failures

• Robustness

• Sounds like a pretty good 
abstraction!



Typical MapReduce problem
1. Read a lot of data (TBs)

2. Map

– Extract something you care about from each record

1. Shuffle and sort Map output

2. Reduce

– Aggregate, summarize, filter or transform sorted 
output

1. Write out the results

Outline remains the same, only 
change the map and reduce 

functions



More specifically 

• Programmer specifies two main 
methods
• Map (k,v)  <k’, v’>*

• Reduce (k’, <v’>*)  <k’, v’>*

• All v’ and k’ are reduced 
together, in order

• Usually also specify
• Partition(k’, total partitions)  partition for k’

• Often a simple hash of the key

• Allows Reduce to be parallelized



Example

• Word frequencies in web pages

• Input = files with one 
document/record

Map
Key=doc.URL
Value=doc.conte
nt

Key’=word
Value’=count

Key’=word
Value’=count

Key’=word
Value’=count

Map
Key=“foo.com/file1”
Value=“to be or not 
to be”

Key’=“to”
Value’=“1” Key’=“be”

Value’=“1”
Key’=“not”
Value’=“1”

Key’=“to”
Value’=“1”

Key’=“be”
Value’=“1”

Key’=“or”
Value’=“1
”



Example continued
• MapReduce lib gathers all pairs with same key

– (shuffle and sort)

• Reduce combines values for a key

Reduce

Key’=“to”
Value’=“1
”

Key’=“be
”
Value’=“1
”
Key’=“or”
Value’=“1
”Key’=“not
”
Value’=“1
”Key’=“to”
Value’=“1
”

Key’=“be
”
Value’=“1
”

Key’=“to”
Value’=“2
”

Key’=“be
”
Value’=“2
”Key’=“or”
Value’=“1
”Key’=“not
”
Value’=“1
”

Reduce



Example pseudo-code

Map(String input_key, String input_value):
  // input_key: document name
  // input_value: document contents
  for each word w in input_values:
    EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
  // key: a word, same for input and output
  // intermediate_values: a list of counts
  int result = 0;
  for each v in intermediate_values:
    result += ParseInt(v);
  Emit(AsString(result));



Widely applicable at Google

• Implemented as a C++ library

• Linked to user programs

• Can read and write many data types

distributed grep
distributed sort
term-vector per host
document clustering
machine learning

web access log stats
web link-graph reversal
inverted index construction
statistical machine 
translation



Example: query freq. over time



Example: language model 
stats

• Used in machine learning translation

• Need to count # of times every 5-word 
sequence occurs

• Keep all those where count >= 4

• Easy with MapReduce:

• Map: extract 5-word sequences  count from 
document

• Reduce: combine counts, write out count if 
large enough



Example: joining with other data

• Generate per-doc summary

• Include per-host info

• E.g., # of pages on host, important terms on host

• Easy with MapReduce:

• Map

• Extract hostname from URL

• Lookup per-host info

• Combine with per-doc data and emit

• Reduce

• Identity function (just emit key/value directly)



MapReduce architecture
• How is this implemented?

• One master, many workers

• Input data split into M map tasks (64MB each)

• Reduce phase partitioned into R reduce tasks

• Tasks are assigned to workers dynamically

• Often: M=200,000; R=4,000; workers=2,000



 MapReduce architecture

• Why is a single coordinator (master) nice?

• Reduces complexity

• Can monitor progress and status from one 
logical place

• Why use multiple workers?

• Take advantage of parallelism

• Useful approach

• Centralize coordination

• De-centralize heavy lifting



MapReduce architecture

1. Master assigns each map to a free worker

• Considers locality of data to worker

• Worker reads task input (often from local disk)

• Worker produces R local files with k/v pairs

1. Master assigns each reduce task to a free 
worker

• Worker reads intermediate k/v pairs from map 
workers

• Worker sorts & applies user’s Reduce op to get 
output







MapReduce fault tolerance

• What is the downside of a centralized Master?

• Can become a single point of failure

• Worry about it becoming a performance bottleneck?

• Not really

• Master isn’t in the critical path for heavy lifting

• Just there to make sure everything runs smoothly

• How can we recover from a Master failure?

• Log state transformations to Google File System

• New master uses log to recover and continue

• Same idea as transactions covered in storage lectures



MapReduce fault tolerance

• How likely is master to fail?

• Not likely

• Individual machine can run for three years

• P(node failure)

• How likely is it that at least one worker will fail?

• Very likely

• For N workers

• 1 – P(no nodes fail)

• = 1 – (P(worker1 doesn’t fail)*…*P(workerN doesn’t fail))

• = 1 – ((1-P(worker1 failure))*… *(1-P(worker1 failure)))

• = 1 – (1-P(node failure))^N

Failure exponentially more likely as N grows!!



MapReduce fault tolerance

• Worker failures handled via 
re-execution

• On worker failure:

• Detect failure via periodic heartbeats

• Re-execute completed and in-progress map 
tasks

• Re-execute in-progress reduce tasks

• Task completion committed through master



MapReduce performance

Sort 10^10 100-byte records (~1TB) in ~10.5 minutes. 
50 lines of C++ code running on 1800 machines.
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