

Review

COMPSCI 210 Recitation

7th Dec 2012

Vamsi Thummala

Latency Comparison
L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD 150,000 ns 0.15 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD 1,000,000 ns 1 ms 4X memory

Disk seek 10,000,000 ns 10 ms 20x data center roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20 ms 80x memory, 20X SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Wait, what is a nanosecond?

http://www.youtube.com/watch?v=JEpsKnWZrJ8

Abstractions: Beauty and Chaos

✔ Context
✔ Component
✔ Connector
✔ Channel
✔ Event
✔ Entity
✔ Identity

✔ Attribute
✔ Label
✔ Principal
✔ Reference Monitor
✔ Subject
✔ Object
✔ Guard

Still ...

http://www.clipartoday.com/clipart/cartoons/cartoon/cartoon_264115.html

Context: Unix
● Pipeline example:

cat compsci210.txt | wc | mail -s "word count" chase@cs.duke.edu

● Component
● Executable program

● Context
● Components in context
● Process

● Connector
● Pipes

● In general, an OS:
● Sets up the contexts
● Enforces isolation
● Mediates interaction

mailto:chase@cs.duke.edu

Context: Protection
Excerpt from Notes on Security:

The Unix example exposes some principles that generalize to other
systems. In general, all of the OS platforms we consider execute
programs (or components, or modules) in processes (or some other
protected context, or sandbox, or protection domain) on nodes linked
by communication networks. A platform's protection system labels
each running program context with attributes representing “who it is”,
and uses these labels to govern its interactions with the outside world.

Reference
monitor

Object
Do

operationPrincipal

GuardRequestSource Resource

More on Protection

Principal may do Operation on Object

Chase Read dFile

Alice Pay invoice 4325 Account Q34

Bob Fire three rounds Bow gun

Reference
monitor

Object
Do

operationPrincipal

GuardRequestSource Resource

Principles for Computer System Design, Turing Award Lecture, 1983

Authentication: Who sent a message?
Authorization: Who is trusted?

Principal: Abstraction of “who”
• People: Chase, Alice
• Services: DeFiler

Principles of Computer System Design ♥ Saltzer & Kaashoek 2009

Protection Systems 101

Reference monitor
Example: OS platform

Isolation boundary

Context: Android

• The four component types

– Activity. Display a screen.

• Push on a “back stack”.

• May be launched by other apps.

– Service. Serve an API.

• Establish an external binder interface.

• Public methods are externally visible.

– Provider. Get/put content objects.

• Serve a URI space with MIME types.

• Backed by SQLite database tables.

– Receiver. Respond to events.

• E.g., low battery.

Synchronization
• Practice problem

 Larry, Moe, and Curly are planting seeds. Larry digs the holes. Moe then places
a seed in each hole. Curly then fills the hole up.

 There are several synchronization constraints:
• Moe cannot plant a seed unless at least one empty hole exists, but

Moe does not care how far Larry gets ahead of Moe.
• Curly cannot fill a hole unless at least one hole exists in which Moe

has planted a seed, but the hole has not yet been filled. Curly does
not care how far Moe gets ahead of Curly.

• Curly does care that Larry does not get more than MAX holes
ahead of Curly. Thus, if there are MAX unfilled holes, Larry has to
wait.

• There is only one shovel with which both Larry and Curly need to
dig and fill the holes, respectively.

 Sketch out the pseudocode for the 3 processes which represent Larry, Curly, and
Moe using semaphores as the synchronization mechanism.

Performance
• Single node OS

– Latency/Response time

– Throughput

• Internet Scale systems

– Consistency

– Availability

– Partition Tolerance

– Incremental scalability

cost

capacity

not
scalable scalable

Servers Under Stress

Ideal

Overload
Thrashing
Collapse

Load (concurrent requests, or arrival rate)

[Von Behren]

Request arrival rate (offered load)

Response
rate

(throughput)

Response
time

saturation

10%
quantile

90%
quantile

median

80% of the requests have
response time r with x1 < r < x2.

x1 x2

“Tail” of 10% of requests with
response time r > x2.

What’s the
mean r?

Understand how the mean (average) response time can be misleading.

A few requests
have very long
response times.

50%

Cumulative Distribution Function (CDF)

SEDA Lessons

• Means/averages are almost never useful: you have to
look at the distribution.

• Pay attention to quantile response time.

• All servers must manage overload.

• Long response time tails can occur under overload, and
that is bad.

• A staged structure with multiple components separated
by queues can help manage performance.

• The staged structure can also help to manage
concurrency and and simplify locking.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Servers Under Stress
	Slide 14
	Slide 15
	Cumulative Distribution Function (CDF)
	SEDA Lessons

