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Latency Comparison

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD 150,000 ns 0.15 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD 1,000,000 ns 1 ms 4X memory

Disk seek 10,000,000 ns 10 ms 20x data center roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20 ms 80x memory, 20X SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms





http://www.youtube.com/watch?v=JEpsKnWZrJ8

Abstractions: Beauty and Chaos

Context
Component
Connector
Channel
Event
Entity
Identity

Attribute

Label

Principal
Reference Monitor
Subject

Object

Guard



http://www.clipartoday.com/clipart/cartoons/cartoon/cartoon_264115.html



Context: Unix

* Pipeline example:

cat compsci210.txt | wc | mail -s "word count”

* (Component

. Executable program

Context
. Components in context

. Process

Connector

. Pipes

In general, an OS:
. Sets up the contexts
. Enforces isolation

. Mediates interaction


mailto:chase@cs.duke.edu

Context: Protection

Excerpt from Notes on Security:

The Unix example exposes some principles that generalize to other
systems. In general, all of the OS platforms we consider execute
programs (or components, or modules) in processes (or some other
protected context, or sandbox, or protection domain) on nodes linked
by communication networks. A platform's protection system labels
each running program context with attributes representing “who it is”,
and uses these labels to govern its interactions with the outside world.

Do

. Reference |l Object
operation

Principal )
monitor

Source Request Guard Resource



More on Protection

Do
. Reference ! :
Principal : = Object
P operation monitor
Source Request Guard Resource
Principal may do Operation on Object
Chase Read dFile
Alice Pay invoice 4325 Account Q34
Bob Fire three rounds Bow gun

Authentication: Who sent a message?
Authorization: Who is trusted?

Principal: Abstraction of “who”
People: Chase, Alice
Services: DeFiler

Principles for Computer System Design, Turing Award Lecture, 1983



Protection Systems 101

Computer system

authentication authorization
module module

eioal
principa Jeso
request authO/iZd? yes/no
i
perform actio/n‘ authenic*
OK

>
guard [ g perform > ,
_ action object
‘audit trail
log

Reference monitor \ /

Example: OS platform

Isolation boundary

Principles of Computer System Design ¥ Saltzer & Kaashoek 2009



Context: Android

* The four component types
— Activity. Display a screen.
* Push on a “back stack”.
* May be launched by other apps.
— Service. Serve an APL.
* Establish an external binder interface.
* Public methods are externally visible.
— Provider. Get/put content objects.
* Serve a URI space with MIME types.
* Backed by SQL.ite database tables.
— Receiver. Respond to events.
* E.g., low battery.




Synchronization

Practice problem

Larry, Moe, and Curly are planting seeds. Larry digs the holes. Moe then places
a seed in each hole. Curly then fills the hole up.

There are several synchronization constraints:

Moe cannot plant a seed unless at least one empty hole exists, but
Moe does not care how far Larry gets ahead of Moe.

Curly cannot fill a hole unless at least one hole exists in which Moe
has planted a seed, but the hole has not yet been filled. Curly does
not care how far Moe gets ahead of Curly.

Curly does care that Larry does not get more than MAX holes
ahead of Curly. Thus, if there are MAX unfilled holes, Larry has to

walit.

There is only one shovel with which both Larry and Curly need to
dig and fill the holes, respectively.

Sketch out the pseudocode for the 3 processes which represent Larry, Curly, and
Moe using semaphores as the synchronization mechanism.



Performance

* Single node OS
— Latency/Response time
— Throughput

* Internet Scale systems ot
— Consistency scalaple|  Scalable
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Servers Under Stress
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Response W Response
rate time
(throughput)
Overload
Thrashing
Collapse

Request arrival rate (offered load)

[Von Behren]



Staged Event-Driven Architecture (SEDA)
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Decompose service into stages separated by queues

o Each stage performs a subset of request processing

e Stages internally event-driven, typically nonblocking
e Queues introduce execution boundary for isolation and conditioning

Each stage contains a thread pool to drive stage execution

o However, threads are not exposed to applications

e Dynamic control grows/shrinks thread pools with demand
> Stages may block if necessary

Best of both threads and events:

o Programmability of threads with explicit flow of events

Matt Welsh, UC Berkeley



Response Time Distribution - 1024 Clients
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Response time, msec

SEDA Flash Apache
Mean RT | 547 ms | 665 ms 475 ms
Max RT 3.8 sec | 37 sec | 1.7 minutes

e SEDA yields predictable performance - Apache and Flash are very unfair

> ‘Unlucky’’ clients see long TCP retransmit backoff times
> Everyone is ‘‘unlucky’’: multiple HTTP requests to load one page!

Matt Welsh, UC Berkeley



Cumulative Distribution Function (CDF)

80% of the requests have : :
[11 7 0

response time r with x1 <r < x2. Tail” of 10./0 of requests with
response time r > x2.

\ J

90% \\ [ A

quantile \V \

A few requests

What's the have very long
mean r? response times.
50%
10%
guantile

x1 X2

Understand how the mean (average) response time can be misleading.



SEDA Lessons

* Means/averages are almost never useful: you have to
look at the distribution.

* Pay attention to quantile response time.
* All servers must manage overload.

* Long response time tails can occur under overload, and
that is bad.

* A staged structure with multiple components separated
by queues can help manage performance.

* The staged structure can also help to manage
concurrency and and simplify locking.
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