
Pointers and Heap
Manager

COMPSCI210 Recitation

7 Sep 2012

Vamsi Thummala

Agenda

Pointers/Alignment/Casting in C

Heap Manager: Dynamic memory
allocation

Review: Processes

+ +
user ID

process ID
parent PID
sibling links

children

virtual address space process descriptor (PCB)

resources

thread

stack

Each process has a thread
 bound to the VAS.

The thread has a stack
addressable through the

VAS.

The kernel can
suspend/restart the thread
wherever and whenever it

wants.

The OS maintains
some state for each

process in the
kernel’s internal

data structures: a
file descriptor table,
links to maintain the
process tree, and a
place to store the

exit status.

The address space is
a private name space
for a set of memory

segments used by the
process.

The kernel must
initialize the process

memory for the
program to run.

Review: Address space

0

high

code library

your data

heap

registers

CPU

R0

Rn

PC

“memory”

x

x

your program

common runtime

stack

address space
(virtual or physical)

SP

y

y

64 bytes space: 3 ways of allocation
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[]
char *p

int p[]
int* p

p

char* p[]
char** p

Pointers (addresses) are 8
bytes on a 64-bit machine.

Pointers, data types

Alignment
p + 0x0

0x1f

0x0

0x1f

0x1f

0x0

char p[]
char *p

int p[]
int* p

p

char* p[]
char** p

The machine requires that an n-byte value
is aligned on an n-byte boundary. n = 2i

X
X

X

Pointer casting

What actually happens in a pointer
cast?

Nothing! It’s just an assignment.
Remember all pointers are the same
size.

The magic happens in dereferencing
and arithmetic

Pointer dereferencing

What gets “returned?”

int * ptr1 = malloc(100);
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;

int val2 = (int) *((char *) ptr1);

What are val1 and val2?

Pointer dereferencing

What gets “returned?”

int * ptr1 = malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

int val1 = *ptr1;

int val2 = (int) *((char *) ptr1);

 // val1 = 0xdeadbeef;

 // val2 = 0xffffffef;

 What happened??

Heap allocation

Allocated heap blocks
for structs or objects.

Align!

A contiguous chunk of
memory obtained from

OS kernel.
E.g., with Unix sbrk()

system call.

A runtime library obtains the
block and manages it as a

“heap” for use by the
programming language
environment, to store

dynamic objects.

E.g., with Unix malloc and
free library calls.

Design considerations

I found a chunk that fits the necessary payload… should I look for a better fit
or not?

Splitting a free block:

void* ptr = malloc(200);

free(ptr);

ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

void* ptr = malloc(200);

free(ptr);

ptr = malloc(192);//use same space, then “mark” remaining
bytes as free??

Fragmentation

Internal fragmentation

Result of payload being smaller than
block size.
void * m1 = malloc(3); void * m1 = malloc(3);

m1,m2 both have to be aligned to 8 bytes…

External fragmentation

Implementation Hurdles

How do we know where the chunks are?

How do we know how big the chunks are?

How do we know which chunks are free?

Remember: no queuing of buffer calls to malloc and free… must deal with
them real-time.

Remember: calls to free only takes a pointer, not a pointer and a
size.

Solution: Need a data structure to store information on the
“chunks”

Where do I keep this data structure?

The data structure

Requirements:

The data structure needs to tell us where the chunks are, how big they are,
and whether they’re free

We need to be able to CHANGE the data structure during calls to malloc and
free

We need to be able to find the next free chunk that is “a good fit for” a given
payload

We need to be able to quickly mark a chunk as free/allocated

We need to be able to detect when we’re out of chunks.

● What do we do when we’re out of chunks?

The data structure

It would be convenient if it worked like:
malloc_struct malloc_data_structure;

…
ptr = malloc(100, &malloc_data_structure);

…

free(ptr, &malloc_data_structure);

…

Instead all we have is the memory we are giving out.

All of it does not have to be payload! We can use
some of that for our data structure.

The data structure

The data structure IS your memory!

A start:

<h1> <pl1> <h2> <pl2> <h3> <pl3>

What goes in the header?
● That’s your job!

Lets say somebody calls free(p2), how
can I coalesce?

● Maybe you need a footer? Maybe not?

The data structure

Check the example metadata structure provided in
cps210_mm.h

typedef struct metadata {

 size_t size;

 struct metadata* next;

 struct metadata* prev;

} metadata_t;

Design considerations

Free blocks: address-ordered or LIFO or
FIFO

What’s the difference?

Pros and cons?

What are the efficiency tradeoffs?

	Slide 1
	Agenda
	Processes: A Closer Look
	A Peek Inside a Running Program
	64 bytes: 3 ways
	Alignment
	Pointer casting
	Pointer dereferencing
	Slide 9
	Heap allocation
	Design considerations
	Slide 12
	Fragmentation
	Slide 14
	Implementation Hurdles
	The data structure
	The data structure
	The data structure
	The data structure
	Design Considerations

