Pointers and Heap
Manager

COMPSCI210 Recitation
7 Sep 2012
Vamsi Thummala

Agenda

Pointers/Alignment/Casting in C

Heap Manager: Dynamic memory
allocation

Review: Processes

virtual address space

-

The address space is
a private name space
for a set of memory
segments used by the
process.

The kernel must
initialize the process
memory for the
program to run.

thread

9,

stack

Each process has a thread
bound to the VAS.

The thread has a stack
addressable through the
VAS.

The kernel can
suspend/restart the thread
wherever and whenever it

wants.

process descriptor (PCB)

user 1D
process ID
parent PID
sibling links

children

/E

resources

The OS maintains
some state for each
process in the
kernel’s internal
data structures: a
file descriptor table,
links to maintain the
process tree, and a
place to store the
exit status.

Review: Address space

CPU

RO

Rn

PC
SP

X

y

registers

_/

'® heap ¢
/ e

\-y——
high

“memory”

address space
(virtual or physical)

Pointers, data types

p + 0xO0
64 bytes space: 3 ways of allocation
0x0
Int p[]
Int* p
char p[]
char* p[]
0x0 char** p
Ox1f
Pointers (addresses) are 8
bytes on a 64-bit machine.
Ox1f

p + 0x0

char pl]
char *p

Ox 1f

Alignment

0x0
int p[]
int* p
e
Ox1f
char* p[]
0x0 char** p

The machine requires that an n-byte value
IS aligned on an n-byte boundary. n =2

Ox 1f

Pointer casting

What actually happens in a pointer
cast?

Nothing! It's just an assignment.

Remember all pointers are the same
size.

The magic happens in dereferencing
and arithmetic

Pointer dereferencing

What gets “returned?”

int * ptrl = malloc(100),
*ptrl = Oxdeadbeef,

int vall = *ptril;
int val2 = (int) *((char *) ptrl);

What are vall and val2?

Pointer dereferencing

What gets “returned?”
int * ptrl = malloc(sizeof(int));
*ptrl = Oxdeadbeef;
int vall = *ptri1;
int val2 = (int) *((char *) ptrl);
// vall = Oxdeadbeef;
// val2 = Oxffffffef;
What happened??

Heap allocation

A contiguous chunk of
memory obtained from
OS kernel.

E.g., with Unix sbrk()
system call.

A runtime library obtains the
—_

block and manages it as a
“heap” for use by the
programming language
environment, to store
dynamic objects.

E.g., with Unix malloc and
free library calls.

—

Allocated heap blocks
for structs or objects.
Align!

Design considerations

| found a chunk that fits the necessary payload... should | look for a better fit
or not?

Splitting a free block:

void* ptr = malloc(200),
free(ptr);

ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

void* ptr = malloc(200),
free(ptr);

ptr = malloc(192);//use same space, then “mark” remaining
bytes as free??

Carnegie Mellon

Allocation Example

pl = malloc(4)

malloc (5)

'O
ha
|

p3 = malloc(6)

free (p2)

P4 = malloc(2)

Fragmentation

Internal fragmentation

Result of payload being smaller than
block size.

void * ml1l = malloc(3); void * ml1l = malloc(3);

ml,m2 both have to be aligned to 8 bytes..

External fragmentation

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)

p2 = malloc(3)

pP3 = malloc(6)
free (p2)
pd = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests

B Thus, difficult to measure

Implementation Hurdles

How do we know where the chunks are?
How do we know how big the chunks are?
How do we know which chunks are free?

Remember: no queuing of buffer calls to malloc and free... must deal with
them real-time.

Remember: calls to free only takes a pointer, not a pointer and a
size.

Solution: Need a data structure to store information on the
“chunks”

Where do I keep this data structure?

The data structure

Requirements:

The data structure needs to tell us where the chunks are, how big they are,
and whether they’re free

We need to be able to CHANGE the data structure during calls to malloc and
free

We need to be able to find the next free chunk that is “a good fit for” a given
payload

We need to be able to quickly mark a chunk as free/allocated
We need to be able to detect when we’re out of chunks.

* What do we do when we're out of chunks?

The data structure

It would be convenient if it worked like:

malloc_struct malloc_data_structure;

ptr = malloc(100, &malloc_data_structure);
free(ptr, &malloc_data_structure);

Instead all we have is the memory we are giving out.

All of it does not have to be payload! We can use
some of that for our data structure.

The data structure

The data structure IS your memory!
A start:
<hl> <pll> <h2> <pl2> <h3> <pl3>
What goes in the header?
 That's your job!

Lets say somebody calls free(p2), how
can | coalesce?

 Maybe you need a footer? Maybe not?

The data structure

Check the example metadata structure provided in
cps210_mm.h

typedef struct metadata {
Size_t size;
struct metadata* next;
struct metadata* prev;

} metadata t;

Design considerations

Free blocks: address-ordered or LIFO or
FIFO

What's the difference?

Pros and cons?
What are the efficiency tradeoffs?

	Slide 1
	Agenda
	Processes: A Closer Look
	A Peek Inside a Running Program
	64 bytes: 3 ways
	Alignment
	Pointer casting
	Pointer dereferencing
	Slide 9
	Heap allocation
	Design considerations
	Slide 12
	Fragmentation
	Slide 14
	Implementation Hurdles
	The data structure
	The data structure
	The data structure
	The data structure
	Design Considerations

