dsh: A Devil Shell

COMPSCI210 Recitation
14 Sep 2012

Vamsi Thummala

Comments on heap manager

QQ's on pointer manipulation
Infinite loop

Space utilization (success rate)
segfault issues

The fact

Debugging segfaults is hard!
gdb can help

Code walk through is often faster (for this lab)

Shell

Interactive command interpreter
A high level language (scripting)
Interface to the OS

Provides support for key OS ideas

— Isolation
— Concurrency
— Communication

— Synchronization

Demo

Unix programming environment

Standard unix programs read a They write their output to standard
byte stream from standard input output (fd==1).

(fd==0). /
9 =

-

If the parent sets it up, the That style makes it

program doesn’t even have easy to combine
to know. simple programs using

pipes or files.

4

Stdin or stdout mig
be bound to a file,
pipe, device, or
network socket.

Shell Concepts

Process creation
Execution

Input/Output redirection
Pipelines

Job control

— Process groups

_ Sessions

_ Foreground/background jobs

« Given that many processes can be executed concurrently, which
processes should have accesses to the keyboard/screen (I/0)?
_ Signals
. SIGSEGV (segfault), SIGINT, SIGCONT

Unix fork/execl/exit/wait syscalls

int pid = fork();
Create a new process that is a clone of
fork child its parent.

fork parent

exec*(“program” [, argvp, envp));
initialize ‘ Overlay the calling process with a new
child context | exec program, and transfer control to it.
- exit(status);

Exit with status, destroying the process.
Note: this is not the only way for a
process to exit!

wait exit int pid = wait*(&status);
- Wait for exit (or other status change) of a
child, and “reap” its exit status. Note:
1 child may have exited before parent calls

wait!

Process creation and execution

while (1) {
printf(“$”);
command = readnparse(args);
switch (pid = fork()) { // new process; concurrency
case -1:

perror(“Failed to fork\n”);

case 0O: // child when pid = 0
exec (command, args, 0); // run command
default: // parent pid > 0

waitpid(pid, NULL, 0); // wait until child is done

Input/Output (1/0)

I/0O through file descriptors

— File descriptor may be for a file, terminal, ...
Example calls

— read(fd, buf, sizeof(buf));

— write(fd, buf, sizeof(buf));
Convention:

— 0: input

— 1: output

— 2. error
Child inherits open file descriptors from parents

I/0 redirection (< >)

Example: “Is > tmpFile”

Modify dsh to insert before exec:
close(1); // release 1d 1
fd = create(“tmpFile”, 0666); // fd will be 1

No modifications to “ls”!

“Is” could be writing to file, terminal, etc., but
programmer of “Is” doesn’t need to know

Pipeline: Chaining processes

* One-way communication channel

* Symbol: |

int fdarray[2]; char buffer[100];
pipe(fdarray);

write(fdarray[1], “hello world”, 11);
read(fdarray[0], butfer, sizeof(butfer));

Pipe between parent/child

int fdarray[2];
char buffer[100];
pipe(fdarray);
switch (pid = fork()) {
case -1: perror(“fork failed”);

case 0: write(fdarray[1], "hello world", 5);

default: n = read(fdarray[0], buffer, sizeof(buffer)); //block until data is
available

}

How does the pipes in shell, i.e, “Is | wc”?
dup2(newfd, oldfd); // duplicates fd; closes and copies at one shot

Process groups

— A process group is a collection of (related) processes.
Each group has a process group ID.

— Each group has a group leader who pid = pgid
— To get the group ID of a process:
pid_t getpgrp(void)
— A process may join an existing group, create a new
group.
int setpgid(pid_t, pid, pid_t, pgid)
— A signal can be sent to the whole group of processes.

pid_t spawn_job(bool fg, pid_t pgrp) {

int ctty = -1;
pid_t pid;

switch (pid = fork()) {

case -1: /* fork failure */
return pid;

case 0: /* child */
/* establish a new process group, and put the child in
* foreground if requested
* Q: what if setpgid fails?
*/
if (pgrp < 0)

pgrp = getpid();

if (setpgid(0,pgrp) == 0 && fg) // If success and fg is set
tcsetpgrp(ctty, pgrp); // assign the terminal

return 0;
default: /* parent */
/* establish child process group here too. */
if (pgrp < 0)
pgrp = pid;
setpgid(pid, pgrp);

return pid;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Unix programming environment
	Slide 7
	Unix fork/exec/exit/wait syscalls
	shell implementation
	Input/Output (I/O)
	I/O redirection
	Slide 12
	Slide 13
	Process groups
	Slide 15

