
dsh: A Devil Shell

COMPSCI210 Recitation

14 Sep 2012

Vamsi Thummala

Comments on heap manager

• Q's on pointer manipulation

• Infinite loop

• Space utilization (success rate)

• segfault issues

The fact

Debugging segfaults is hard!

gdb can help

Code walk through is often faster (for this lab)

Shell

• Interactive command interpreter

• A high level language (scripting)

• Interface to the OS

• Provides support for key OS ideas
– Isolation

– Concurrency

– Communication

– Synchronization

Demo

Unix programming environment

stdoutstdin

Standard unix programs read a
byte stream from standard input
(fd==0).

They write their output to standard
output (fd==1).

That style makes it
easy to combine
simple programs using
pipes or files.

If the parent sets it up, the
program doesn’t even have
to know.

Stdin or stdout might
be bound to a file,
pipe, device, or
network socket.

Shell Concepts

• Process creation

• Execution

• Input/Output redirection

• Pipelines

• Job control

– Process groups

– Sessions

– Foreground/background jobs

• Given that many processes can be executed concurrently, which
processes should have accesses to the keyboard/screen (I/O)?

– Signals

• SIGSEGV (segfault), SIGINT, SIGCONT

Unix fork/exec/exit/wait syscalls

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process with a new
program, and transfer control to it.

exit(status);
Exit with status, destroying the process.
Note: this is not the only way for a
process to exit!

int pid = wait*(&status);
Wait for exit (or other status change) of a
child, and “reap” its exit status. Note:
child may have exited before parent calls
wait!

exec
initialize
child context

Process creation and execution
 while (1) {

printf(“$”);
 command = readnparse(args);
 switch (pid = fork()) { // new process; concurrency
 case -1:

 perror(“Failed to fork\n”);

case 0: // child when pid = 0

exec (command, args, 0); // run command
 default: // parent pid > 0

 waitpid(pid, NULL, 0); // wait until child is done
}

Input/Output (I/O)

• I/O through file descriptors
– File descriptor may be for a file, terminal, …

• Example calls
– read(fd, buf, sizeof(buf));

– write(fd, buf, sizeof(buf));

• Convention:
– 0: input
– 1: output
– 2: error

• Child inherits open file descriptors from parents

I/O redirection (< >)

• Example: “ls > tmpFile”
• Modify dsh to insert before exec:

close(1); // release fd 1
fd = create(“tmpFile”, 0666); // fd will be 1

• No modifications to “ls”!
• “ls” could be writing to file, terminal, etc., but

programmer of “ls” doesn’t need to know

Pipeline: Chaining processes

• One-way communication channel

• Symbol: |

int fdarray[2]; char buffer[100];

pipe(fdarray);

write(fdarray[1], “hello world”, 11);

read(fdarray[0], buffer, sizeof(buffer));

Pipe between parent/child

int fdarray[2];

char buffer[100];

pipe(fdarray);
 switch (pid = fork()) {
 case -1: perror(“fork failed”);
 case 0: write(fdarray[1], "hello world", 5);
 default: n = read(fdarray[0], buffer, sizeof(buffer)); //block until data is

available
 }

How does the pipes in shell, i.e, “ls | wc”?
dup2(newfd, oldfd); // duplicates fd; closes and copies at one shot

Process groups

– A process group is a collection of (related) processes.
Each group has a process group ID.

– Each group has a group leader who pid = pgid

– To get the group ID of a process:
pid_t getpgrp(void)

– A process may join an existing group, create a new
group.

 int setpgid(pid_t, pid, pid_t, pgid)

– A signal can be sent to the whole group of processes.

pid_t spawn_job(bool fg, pid_t pgrp) {

 int ctty = -1;
 pid_t pid;

 switch (pid = fork()) {
 case -1: /* fork failure */

 return pid;
 case 0: /* child */

 /* establish a new process group, and put the child in
 * foreground if requested
 * Q: what if setpgid fails?
 */
 if (pgrp < 0)

 pgrp = getpid();

 if (setpgid(0,pgrp) == 0 && fg) // If success and fg is set
 tcsetpgrp(ctty, pgrp); // assign the terminal

 return 0;
 default: /* parent */

 /* establish child process group here too. */
 if (pgrp < 0)

 pgrp = pid;
 setpgid(pid, pgrp);

 return pid;
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Unix programming environment
	Slide 7
	Unix fork/exec/exit/wait syscalls
	shell implementation
	Input/Output (I/O)
	I/O redirection
	Slide 12
	Slide 13
	Process groups
	Slide 15

