dsh & Networking

COMPSCI210 Recitation
21 Sep 2012

Vamsi Thummala

Devil shell (dsh)

Read the handout

Read the “Exceptional Control Flow” from
CS:APP

Form groups of size two; three is okay
Start early!
Use piazza for posting questions

Review: Shell

Interactive command interpreter
A high level language (scripting)
Interface to the OS

Provides support for key OS ideas

— Isolation
— Concurrency
— Communication

— Synchronization

Carnegie Mellon

Unix Process Hierarchy

Shell Concepts

Process creation
Execution

Input/Output redirection
Pipelines

Job control

— Process groups

— Foreground/background jobs

. Given that many processes can be executed concurrently, which
processes should have accesses to the keyboard/screen (I/0)?
_ Signals (limited for the lab!)
« SIGCONT

dsh

* Built in commands

— ctrl-d (quit/exit the dsh)

Data structures

/* A process is a single process. */
typedef struct process {

struct process *next; /* next process in pipeline */

int argc; /* useful for free(ing) argv */

char **argv; /* for exec; argv[0] is the path of the executable file*/

pid t pid; /* A process is a single process. */

bool completed; /* true if process has completed */

bool stopped; /* true if process has stopped */

int status; /* reported status value from job control; 0 on success and nonzero otherwise */

} process t;

/* A job is a process itself or a pipeline of processes.
* Each job has exactly one process group (pgid) containing all the processes in the job.
* Each process group has exactly one process that is its leader.

*/
typedef struct job {
struct job *next; /* next job */
char *commandinfo; /* entire command line input given by the user; useful for logging and message
display*/
process t *first process; /* list of processes in this job */
pid t pgid; /* process group ID */
bool notified; /* true if user told about stopped job */
struct termios tmodes; /* saved terminal modes */
int stdin, stdout, stderr; /* standard i/o channels */
bool bg; /* true when & is issued on the command line */
char *ifile; /* stores input file name when < is issued */
char *ofile; /* stores output file name when > is issued */

} job t;

Parser demo

Getting started on dsh ...

Include the pid in display prompt

Start logging all the info

— Required for dsh!

Play with parser

Implement built-in commands
— cd, jobs

Input/output redirection

— Use the MACROs provided

— dup2()

Add support for pipelines
Add support for bg and fg

Shell Refresher

Carnegie Mellon

Understanding fork

Process

- pid_t pid = fork();

if (pid 0) {
printf("hello from
} else {
printf("hello from
}

child\n");

parent\n");

pid_t pid = fork();

if (pid 0) {

M printf("hello from

} else {
printf("hello from

}

-

pid =

child\n");

parent\n");

pid_t pid = fork();
if (pid 0) {

printf("hello from
} else {

‘ printf("hello from
}

child\n");

parent\n");

Child Process

‘ pid_t pid = fork();
if (pid 0) {
printf("hello from
} else {
printf("hello from

}

child\n");

parent\n");

pid_t pid = fork();
if (pid 0) {
printf("hello from
} else {
printf("hello from
}

pid =0

child\n");

parent\n");

pid_t pid = fork();
if (pid 0) {
printf("hello from
} else {
printf("hello from
}

-

child\n");

parent\n");

hello from parent Which one is first? hello from child

11

Fork Example

Both parent and child can continue forking

zoid fork3() Bve
printf("LO\n"); =1 Bve
fork(); _Bye
printf("L1\n"); L1 |L2 | Bye
fork(); | Bye
printf("L2\n"); L2 | Bye
fork(); 1
printf("Bye\n"); —re

} L0 [L1|L2 | Bye

12

Carnegie Mellon

waltpid(): Waiting for a Specific Process

walitpid(pid, &status, options)
suspends current process until specific process terminates

various options (see CS:APP)

void forki1i()
{

pid_t pid[N];
int 1i;
int child_status;
for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (1 = N-1; i >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

13

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);

exit(0);
}
}
afgvlargc] = NULL
argvlargc-1] > “/usr/include”
.. > 4.1t
> V/J n

argv SLargvio] 1s
envp[n] = NULL
envp[n-1] > “PWD=/usr/droh”
... > “PRINTER=1iron”
envp[O] > “USER=droh”

environ >
14

Pipe between parent/child

int fdarray[2];
char buffer[100];
pipe(fdarray);
switch (pid = fork()) {
case -1: perror(“fork failed”);

case 0: write(fdarray[1], "hello world", 5);

default: n = read(fdarray[0], buffer, sizeof(buffer)); //block until data is
available

}

How does the pipes in shell, i.e, “Is | wc”?
dup2(oldfd, newfd); // duplicates fd; closes and copies at one shot

Implementing bg and g

Set process group

— setpgid()

— Tcsetpgrp()

ctrl-z

— stops a fg job

In dsh, you cannot stop a bg job
Resuming jobs

_ kill(-(j->pgid), SIGCONT)

— Note the negative sign

« Interpreted as process group

Process States

(s —
S (=)

Running or runnable (on run queue)
Uninterruptible sleep (waiting for some event)

Interruptible sleep (waiting for some event or signal)

= » O =X

Stopped, either by a job control signal or because it is being traced by a
debugger.

Z Zombie process, terminated but not yet reaped by its parent.

Client/Server/Networking

Services

: GET

Networking

endpoint
port operations
advertise (bind)
listen
. R connect (bind)
channel close
binding
connection write/send
read/receive
node A node B

Some IPC mechanisms allow communication across a network.
E.g.: sockets using Internet communication protocols (TCP/IP).
Each endpoint on a node (host) has a port number.

Each node has one or more interfaces, each on at most one network.

Each interface may be reachable on its network by one or more names.
E.g. an IP address and an (optional) DNS name.

Carnegie Mellon

Client-Server Transaction

. Client sends reques
/ Server

rocess, process

4. Client . Server sends response
handles handles

response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

21

Carnegie Mellon

A detailed example:
Client/Server Transaction

Client socket Server socket
address address
128.2.194.242:51213 :80

;/ \ Server
vort 80

Connection socket pair
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web
servers

22

Using Ports to Identify
Services

Client host

Service request for
128.2.194.242:80
(i.e., the Web server)

Server host 128.2.194.242

Carnegie Mellon

Web server
(port 80)

Service request for
128.2.194.242:7
(i.e., the echo server)

»(Kernel

Echo server
(port 7)

Web server
(port 80)

»(Kernel

Echo server

23

Carnegie Mellon

Servers

Servers are long-running processes (daemons)
Created at boot-time (typically) by the init process (process 1)

Run continuously until the machine is turned off

Each server waits for requests to arrive on a well-known port
associated with a particular service

Port 7: echo server
Port 23: telnet server
Port 25: mail server
Port 80: HTTP server

A machine that runs a server process is also often referred to as a
“server”

24

Server Examples

Web server (port 80)
Resource: files/compute cycles (CGI programs)
Service: retrieves files and runs CGI programs on behalf of the client

FTP server (20, 21)

Resource: files See /etc/services for
a comprehensive list
of the port mappings

on a Linux machine

Service: stores and retrieve files

Telnet server (23)
Resource: terminal
Service: proxies a terminal on the server machine

Mail server (25)

Resource: email “spool” file
Service: stores mail messages in spool file

25

Carnegie Mellon

Sockets Interface

Created in the early 80’s as part of the original
Berkeley distribution of Unix that contained an
early version of the Internet protocols

Provides a user-level interface to the network
Underlying basis for all Internet applications

Based on client/server programming model

26

Sockets

What is a socket?
To the kernel, a socket is an endpoint of communication

To an application, a socket is a file descriptor that lets the
application read/write from/to the network

* Remember: All Unix I/O devices, including networks, are modeled
as files

Clients and servers communicate with each other by reading
from and writing to socket descriptors

»

Client l ‘ l Server

clientfd serverfd

The main distinction between reqgular file /O and socket I/O is
how the application “opens” the socket descriptors

27

Carnegie Mellon

Overview of the Sockets

Inter_face

open_listenfd

wait connection
request from

— lnlext client

socket socket
Client 1 Server
en bind
open_clientfd l
listen
Connection l -
request
connect [> accept <
) < rio _writen »rio_readlineb)
Client /
Server l l
Session rio_readlineb [« rio _writen
close S L — »rio_readlineb

A 4

close

28

java.net

* Low level API
— Addresses
— Sockets
— Interfaces

* High level API
— URIs
— URLs

— Connections

	Slide 1
	Slide 2
	Slide 3
	Unix Process Hierarchy
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Understanding fork
	Fork Example #3
	waitpid(): Waiting for a Specific Process
	execve Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Networking
	Last Time: Client-Server Transaction
	Putting it all Together:
Anatomy of an Internet Connection
	Using Ports to Identify Services
	Servers
	Server Examples
	Sockets Interface
	Sockets
	Overview of the Sockets Interface
	Slide 29

