

Midterm Exam Review

COMPSCI210 Recitation

5 Oct 2012

Vamsi Thummala

number whereas initiated assist trojan routine always target's stub external
run malware userID reference code handles bug change statements
stack private execution executing machine cause
hash time runs names installed executes invoking pipeline
result trap name called initiator important secret verify
knows communication paper attacks calls producer
virtual manager attacker old output
space group component new target
key posts justify fail child website
Bob running encryption decryption different fail
standard also parent message another address mechanisms password using
fault exception address Linux particular property know even
process invocation launch fake one secure channel system
grade processes hard pipe succeeds channel
next pipe referring terminal
parties input boundary
argument mode returns useful attack
register short encrypted user's
call digest used
score memory used Alice
without

user

Android

kernel

application

process

event.e.g

link

call

generates

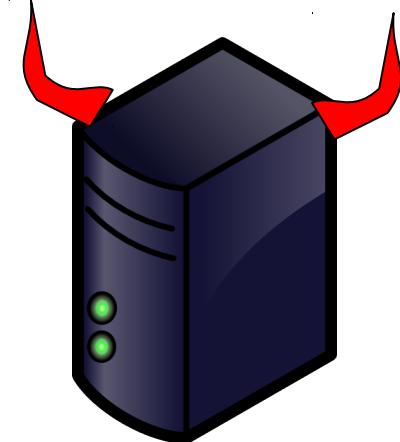
used

Alice

without

My biased view

- A bit challenging
 - Tests your reading comprehension skills under time pressure
- Thought provoking
 - Not a brain dump test
- Opportunity for learning
 - Just an another class
- Tests your confidence
 - Not difficult to score but easy to get lost


Terminology so far ..

- Entity
 - Principal, Identity, Attribute, Label
- Component
- Context
- Connector
- Channel
- Trusted computing base
- Authentication
- Authorization
- Reference monitor
 - Subject, Object, Guard
- Process
- Thread
- Kernel
- Address space
- Files
- Pipes
- Sockets
- Binder
- Event

Systems/Abstractions

- Traditional single node
 - Unix
 - Linux
- Mobile
 - Android/Linux
- Web
 - Chromium/Linux
- Network basics
 - Client/Server

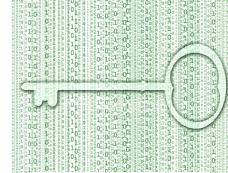
Security, an overview

We reduce it to three intertwined issues:

1. What program am I running?

- Can this program be trusted? Who says?
- Can I be sure that the program has not been tampered?

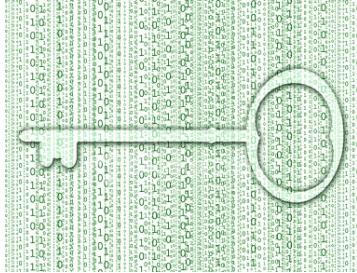
2 . Who am I talking to?


- Can this entity be trusted?
- Can I be sure the communication has not been tampered?

3. Should I approve this request? R(op, subject, object)

- Who is the requester? (subject)
- What program is speaking for the requester?
- Does the subject have the required permissions?

Elements of security


- **Isolation/protection**
 - Sandboxes and boundaries prevent unchecked access.
- **Integrity**
 - Fingerprint data to detect tampering.
 - Encrypt data to prevent access or tampering.
- **Authentication**
 - Identify a peer by proof that it possesses a secret.
- **Identity and attributes**
 - Identities have credentials: names, tags, roles...
- **Authorization == access control**
 - Guard checks credentials against an access policy.

Access Control

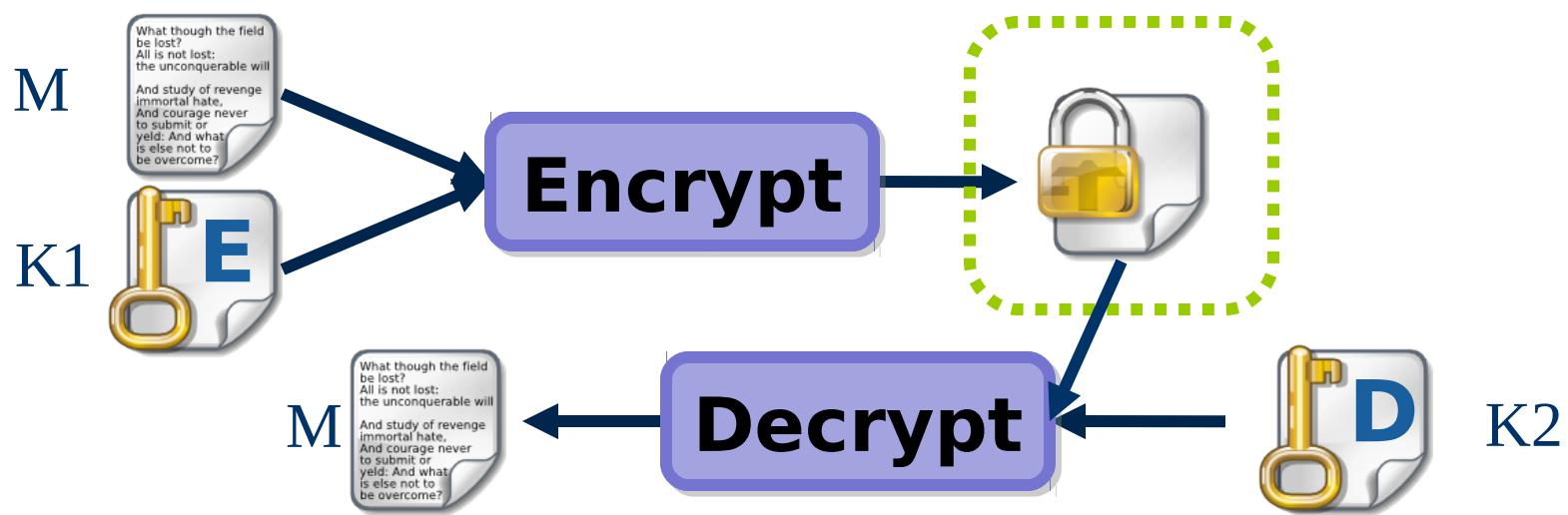
- Triplet
 - {op, subject, object}
- Components run within contexts (isolated sandboxes).
- Each component/context is associated with an identity with some attributes (subject).
- Components use system calls to interact across context boundaries, or access shared objects.
- Each object has some access attributes.
- Principle of least privilege limits the damage a component can do if it “goes rogue”.

Crypto primitives

Encrypt/Decrypt

Signing

Secure hashing


useful for
fingerprinting data

Use a shared secret key
(symmetric)
or
use a keypair
one public, one private
(asymmetric)

Cryptography for Busy People

- Standard crypto functions parameterized by **keys**.
 - Fixed-width “random” value (length matters, e.g., 256-bit)
 - Symmetric (DES: fast, requires shared key $K_1 = K_2$)
 - Asymmetric (RSA: slow, uses two keys)
- “Believed to be computationally infeasible” to break

[Image: Landon Cox]

Two Flavors of “Signature”

- A digest encrypted with a private asymmetric key is called a **digital signature**
 - “Proves” that a particular identity sent the message.
 - “Proves” the message has not been tampered.
 - “Unforgeable”
 - The sender cannot deny sending the message.
 - “non-repudiable”
 - Can be legally binding in the United States
- A digest encrypted with a shared symmetric key is called a **message authentication code (MAC)**.
 - faster, but...

Nonce

- Verifies the freshness of a message
- Eavesdropping
 - serverNonce
- Tampering
 - clientNonce