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Venues for systems research



Comments on lab submissions so 
far..

● Read handout, ask questions
● Think before you start coding
● Write readable code
● man/doc are your friends
● Please do not post your code on the web
● Please do not copy any code directly from the web or 

other sources
– You can look, but write your own code

– When in doubt, always ask first



We hear your feedback

● Next lab: Multi-threaded programming in Java
– We provided only the interfaces

– You can start from the scratch

– Due on 26th Oct, 11:59pm
– You can work in groups of 2 or at most 3.

● Exam FAQ
– Check the course page



Processes: A Closer Look
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Each process has a thread  
bound to the VAS.

The thread has a saved user 
context as well as a system 

context.

The kernel can manipulate 
the contexts to start the thread 

running wherever it wants.

Process state includes 
a file descriptor table, 
links to maintain the 
process tree, and a 

place to store the exit 
status.

The address space is 
represented by page 

table, a set of 
translations to physical 

memory allocated from a 
kernel memory manager.

The kernel must 
initialize the process 

memory with the 
program image to run.



Two threads sharing a CPU
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Concurrency

● Having multiple threads active at one time
● Thread is the unit of concurrency
● Primary topics

● How threads cooperate on a single task
● How multiple threads can share the CPUs



An example

● Two threads (A and B)
● A tries to increment i 
● B tries to decrement i

Thread A:
  i = 0;
  while (i < 10){
    i++;
  }
 printf(“A done.”)

Thread B:
  i = 0;
  while (i > -10){
    i--;
  }
  printf(“B done.”)



Example continued ..

● Who wins?
● Does someone has to win?

Thread A:
  i = 0;
  while (i < 10){
    i++;
  }
 printf(“A done.”)

Thread B:
  i = 0;
  while (i > -10){
    i--;
  }
  printf(“B done.”)



Debugging non-determinism

● Requires worst-case reasoning
– Eliminate all ways for program to break

● Debugging is hard
– Can’t test all possible interleavings
– Bugs may only happen sometimes

● Heisenbug
– Re-running program may make the bug disappear

– Doesn’t mean it isn’t still there!



Constraining concurrency

● Synchronization
– Controlling thread interleavings

● Some events are independent
– No shared state
– Relative order of these events don’t matter

● Other events are dependent
– Output of one can be input to another

– Their order can affect program results



Goals of synchronization

1. All interleavings must give correct result
– Correct concurrent program

• Works no matter how fast threads run

• Important for your projects!

2.  Constrain program as little as possible
Why?
Constraints slow program down
 Constraints create complexity



“Too much milk” rules

● The fridge must be stocked with milk
– Milk expires quickly, so never > 1 milk

● Landon and Melissa
– Can come home at any time

– If either sees an empty fridge, must buy milk

– Code (no synchronization)

if (noMilk){
  buy milk;
}



“Too much milk” principals



Time

3:00 Look in fridge (no 
milk)

3:05 Go to grocery store

3:10 Look in fridge (no 
milk)

3:15 Buy milk

3:20 Go to grocery store

3:25 Arrive home, stock 
fridge

3:30 Buy milk

3:35 Arrive home, stock 
fridge

Too much milk!



What broke?

● Code worked sometimes, but not always
– Code contained a race condition

– Processor speed caused incorrect result
● First type of synchronization

– Mutual exclusion
– Critical sections



Synchronization concepts

● Mutual exclusion
● Ensure 1 thread doing something 

at a time
● E.g. 1 person shops at a time
● Code blocks are atomic w/re to 

each other
● Threads can’t run code blocks at 

same time



Synchronization concepts

● Critical section
● Code block must run atomically

● w.r.t some piece of the code
● If A and B are critical w/re to each other

● Threads mustn’t interleave code from A and B 
A and B mutually exclude each other

● Conflicting code is often same block
● But executed by different threads 
● Reads/writes shared data (e.g. screen, fridge)



Back to “Too much milk”

● What is the critical section?

● Landon and Melissa’s critical 
sections
● Must be atomic w/re to each other

if (noMilk){
  buy milk;
}



Solution 1 code

● Atomic operations
● Load: check note
● Store: leave note

if (noMilk) {
  if (noNote){
    leave note;
    buy milk;
    remove note;
  }
}



Does it work?

if (noMilk) {
  if (noNote){
    leave note;
    buy milk;
    remove note;
  }
}

if (noMilk) {
  if (noNote){
    leave note;
    buy milk;
    remove note;
  }
}

1 2

3 4

Is this better than no synchronization at all?
What if “if” sections are switched?



What broke?

● Melissa’s events can happen
● After Landon checks for a note
● Before Landon leaves a note

if (noMilk) {
  if (noNote){
    leave note;
    buy milk;
    remove note;
  }
}



Next solution

Idea:
●  Change the order of “leave note”, 

“check note”
● Requires labeled notes (else you’ll see 

your note)



Does it work?

leave noteLandon
if (no noteMelissa){
  if (noMilk){
    buy milk;
  }
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
  if (noMilk){
    buy milk;
  }
}
remove noteMelissa

Nope. (Illustration of “starvation.”)



What about now?

while (noMilk){
  leave noteLandon
  if(no noteMelissa){
    if(noMilk){
      buy milk;
    }
  }
  remove noteLandon
}

while (noMilk){
  leave noteMelissa
  if(no noteLandon){
    if(noMilk){
      buy milk;
    }
  }
  remove noteMelissa
}

Nope. 
(Same starvation problem as before)



Next solution

● We’re getting closer
 

●Problem
● Who buys milk if both leave notes

● Solution
● Let Landon hang around to make sure 

job is done



Does it work?

leave noteLandon
while (noteMelissa){
  do nothing
}
if (noMilk){
  buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
  if (noMilk){
    buy milk;
  }
}
remove noteMelissa

Yes!  It does work!  Can you show it?
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