
Concurrency

COMPSCI210 Recitation

12 Oct 2012

Vamsi Thummala

Venues for systems research

Comments on lab submissions so
far..

● Read handout, ask questions
● Think before you start coding
● Write readable code
● man/doc are your friends
● Please do not post your code on the web
● Please do not copy any code directly from the web or

other sources
– You can look, but write your own code

– When in doubt, always ask first

We hear your feedback

● Next lab: Multi-threaded programming in Java
– We provided only the interfaces

– You can start from the scratch

– Due on 26th Oct, 11:59pm
– You can work in groups of 2 or at most 3.

● Exam FAQ
– Check the course page

Processes: A Closer Look

+ +
user ID

process ID
parent PID

sibling links
children

virtual address space process descriptor (PCB)

resources

thread

stack

Each process has a thread
bound to the VAS.

The thread has a saved user
context as well as a system

context.

The kernel can manipulate
the contexts to start the thread

running wherever it wants.

Process state includes
a file descriptor table,
links to maintain the
process tree, and a

place to store the exit
status.

The address space is
represented by page

table, a set of
translations to physical

memory allocated from a
kernel memory manager.

The kernel must
initialize the process

memory with the
program image to run.

Two threads sharing a CPU

reality

concept

context
switch

Concurrency

● Having multiple threads active at one time
● Thread is the unit of concurrency
● Primary topics

● How threads cooperate on a single task
● How multiple threads can share the CPUs

An example

● Two threads (A and B)
● A tries to increment i
● B tries to decrement i

Thread A:
 i = 0;
 while (i < 10){
 i++;
 }
 printf(“A done.”)

Thread B:
 i = 0;
 while (i > -10){
 i--;
 }
 printf(“B done.”)

Example continued ..

● Who wins?
● Does someone has to win?

Thread A:
 i = 0;
 while (i < 10){
 i++;
 }
 printf(“A done.”)

Thread B:
 i = 0;
 while (i > -10){
 i--;
 }
 printf(“B done.”)

Debugging non-determinism

● Requires worst-case reasoning
– Eliminate all ways for program to break

● Debugging is hard
– Can’t test all possible interleavings
– Bugs may only happen sometimes

● Heisenbug
– Re-running program may make the bug disappear

– Doesn’t mean it isn’t still there!

Constraining concurrency

● Synchronization
– Controlling thread interleavings

● Some events are independent
– No shared state
– Relative order of these events don’t matter

● Other events are dependent
– Output of one can be input to another

– Their order can affect program results

Goals of synchronization

1. All interleavings must give correct result
– Correct concurrent program

• Works no matter how fast threads run

• Important for your projects!

2. Constrain program as little as possible
Why?
Constraints slow program down
 Constraints create complexity

“Too much milk” rules

● The fridge must be stocked with milk
– Milk expires quickly, so never > 1 milk

● Landon and Melissa
– Can come home at any time

– If either sees an empty fridge, must buy milk

– Code (no synchronization)

if (noMilk){
 buy milk;
}

“Too much milk” principals

Time

3:00 Look in fridge (no
milk)

3:05 Go to grocery store

3:10 Look in fridge (no
milk)

3:15 Buy milk

3:20 Go to grocery store

3:25 Arrive home, stock
fridge

3:30 Buy milk

3:35 Arrive home, stock
fridge

Too much milk!

What broke?

● Code worked sometimes, but not always
– Code contained a race condition

– Processor speed caused incorrect result
● First type of synchronization

– Mutual exclusion
– Critical sections

Synchronization concepts

● Mutual exclusion
● Ensure 1 thread doing something

at a time
● E.g. 1 person shops at a time
● Code blocks are atomic w/re to

each other
● Threads can’t run code blocks at

same time

Synchronization concepts

● Critical section
● Code block must run atomically

● w.r.t some piece of the code
● If A and B are critical w/re to each other

● Threads mustn’t interleave code from A and B
A and B mutually exclude each other

● Conflicting code is often same block
● But executed by different threads
● Reads/writes shared data (e.g. screen, fridge)

Back to “Too much milk”

● What is the critical section?

● Landon and Melissa’s critical
sections
● Must be atomic w/re to each other

if (noMilk){
 buy milk;
}

Solution 1 code

● Atomic operations
● Load: check note
● Store: leave note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Does it work?

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

1 2

3 4

Is this better than no synchronization at all?
What if “if” sections are switched?

What broke?

● Melissa’s events can happen
● After Landon checks for a note
● Before Landon leaves a note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Next solution

Idea:
● Change the order of “leave note”,

“check note”
● Requires labeled notes (else you’ll see

your note)

Does it work?

leave noteLandon
if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Nope. (Illustration of “starvation.”)

What about now?

while (noMilk){
 leave noteLandon
 if(no noteMelissa){
 if(noMilk){
 buy milk;
 }
 }
 remove noteLandon
}

while (noMilk){
 leave noteMelissa
 if(no noteLandon){
 if(noMilk){
 buy milk;
 }
 }
 remove noteMelissa
}

Nope.
(Same starvation problem as before)

Next solution

● We’re getting closer

●Problem
● Who buys milk if both leave notes

● Solution
● Let Landon hang around to make sure

job is done

Does it work?

leave noteLandon
while (noteMelissa){
 do nothing
}
if (noMilk){
 buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Yes! It does work! Can you show it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Processes: A Closer Look
	Two threads sharing a CPU
	Slide 7
	Slide 8
	Slide 9
	Debugging non-determinism
	Constraining concurrency
	Goals of synchronization
	“Too much milk” rules
	“Too much milk” principals
	Unsynchronized code will break
	What broke?
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

