Concurrency

COMPSCI210 Recitation
12 Oct 2012

Vamsi Thummala

Venues for systems research

10th USENIX Symposium on Operating Systems Design and Implementation

®5D ‘ 1 2 OCTOBER 8—10, 2012
HOLLYWOOD, CA

sponsored by USENIX in cooperation with ACM SIGOPS COMPUTING SYSTEMS

ASSOCIATION

usenix

SOSP'13: The 24th ACM Symposium on Operating Systems Principles

Movember 3-8, 2013, Memacolin Woodlands Resort, Pennsylvania

Comments on lab submissions so
far..

* Read handout, ask questions

* Think before you start coding

* Write readable code

* man/doc are your friends

* Please do not post your code on the web

* Please do not copy any code directly from the web or
other sources

— You can look, but write your own code
— When in doubt, always ask first

We hear your feedback

* Next lab: Multi-threaded programming in Java
— We provided only the interfaces

— You can start from the scratch
— Due on 26th Oct, 11:59pm
— You can work in groups of 2 or at most 3.

* Exam FAQ
— Check the course page

Processes: A Closer Look

virtual address space thread

0
+ i +

The address space is Each process has a thread
represented by page bound to the VAS.
table, a set of
translations to physical The thread has a saved user
memory allocated froma context as well as a system
kernel memory manager. context.
The kernel must The kernel can manipulate
initialize the process the contexts to start the thread
memory with the running wherever it wants.

program image to run.

process descriptor (PCB)

user ID
process ID
parent PID

sibling links
children resources

Process state includes
a file descriptor table,
links to maintain the
process tree, and a
place to store the exit
status.

Two threads sharing a CPU

Concurrency

* Having multiple threads active at one time
* Thread is the unit of concurrency
* Primary topics

* How threads cooperate on a single task

* How multiple threads can share the CPUs

An example

* Two threads (A and B)

* A tries to increment i

* B tries to decrement i

Thread A: Thread B:
i=o0; 1=0;
while (i < 10){ while (i > -10){
i++; 1--;
} }

printf(“A done.”) printf(“B done.”)

Example continued ..

* Who wins?

* Does someone has to win?

Thread A: Thread B:
i=o0; 1=0;
while (i < 10){ while (i > -10){
i++; 1--;
} }

printf(“A done.”) printf(“B done.”)

Debugging non-determinism

* Requires worst-case reasoning
— Eliminate all ways for program to break
* Debugging is hard

— Can’t test all possible interleavings

— Bugs may only happen sometimes

* Heisenbug
— Re-running program may make the bug disappear
— Doesn’t mean it isn’t still there!

Constraining concurrency

* Synchronization
— Controlling thread interleavings
* Some events are independent

— No shared state
— Relative order of these events don’t matter

* Other events are dependent
— Output of one can be input to another
— Their order can affect program results

Goals of synchronization

1. All interleavings must give correct result

— Correct concurrent program

* Works no matter how fast threads run

* Important for your projects!
2. Constrain program as little as possible
" Why?
" Constraints slow program down

U Constraints create complexity

“T'oo much milk” rules

* The fridge must be stocked with milk

— Milk expires quickly, so never > 1 milk

* Landon and Melissa
— Can come home at any time
— If either sees an empty fridge, must buy milk

— Code (no synchronization)

buy milk;

“Too much milk” principals

Time ifﬁ

3:00 Look in fridge (no
milk)

3:05 Go to grocery store

3:10 Look in fridge (no
milk)

3:15 Buy milk

3:20 Go to grocery store
3:25 Arrive home, stock

fridge
3:30 Buy milk

3:35 Arrive home, stock
fridge
Too much milk!

What broke?

* Code worked sometimes, but not always
— Code contained a race condition
— Processor speed caused incorrect result

* First type of synchronization

— Mutual exclusion

— Critical sections

Synchronization concepts

 Mutual exclusion

* Ensure 1 thread doing something
at a time

* E.g. 1 person shops at a time

* Code blocks are atomic w/re to
each other

* Threads can’t run code blocks at
same time

Synchronization concepts

* Critical section
* Code block must run atomically

*w.r.t some piece of the code

 |If A and B are critical w/re to each other

e Threads mustn’t interleave code from A and B
A and B mutually exclude each other

* Conflicting code is often same block
* But executed by different threads
 Reads/writes shared data (e.g. screen, fridge)

Back to “Too much milk”

* What iIs the critical section?

= = = = = = = —— = — - -

'if (noMilk){:
buy milk;

e |l andon and Melissa’s critical
sections

e Must be atomic w/re to each other

Solution 1 code

* Atomic operations 1if én?Mlﬁkz g{
1 NONOTeE
* Load: check note

leave note;
buy milk:
e Store: leave note - U

remove nhote;

Does 1t work?

if (noMilk) { f (noMilk) {
1f (noNote)({ 1f (noNote)({

leave note; leave note;
buy milk; @ buy milk;
remove nhote; remove note;

} }

Is this better than no synchronization at all?
What if “if” sections are switched?

What broke?

* Melissa’s events can happen
 After Landon checks for a note
 Before Landon leaves a note

|
| = |
.4....?-.1:..(!!9.'\.'9'9.9.).{....l....

leave note; :

|

|

|

|

|

l buy milk;

: remove note,;
|

|

Next solution

ldea:

* Change the order of “leave note”,
“check note”

* Requires labeled notes (else you’ll see
your note)

Does 1t work?

leave noteMelissa
if (no noteLandon){

leave notelLandon
if (no noteMelissa){

if (noMilk)({
buy milk;
}
}

remove noteLandon

if (noMilk)({
buy milk;
}
}

remove noteMelissa

Nope. (lllustration of “starvation.”)

What about now?

while (noMilk){
leave noteMelissa
if(no noteLandon){

while (noMilk)({
leave notelLandon
if(no noteMelissa){

1f(noMilk){
buy milk;
}
}

remove noteLandon

1f(noMilk){
buy milk;
}

}

remove noteMelissa

}

}

Nope.
(Same starvation problem as before)

Next solution

* We're getting closer

*Problem
* Who buys milk if both leave notes

* SO

ution
_ et Landon hang around to make sure

job Is done

Does 1t work?

leave noteMelissa
if (no noteLandon){

leave notelLandon
while (noteMelissa){

do nothing

}

if (noMilk)({
buy milk;

}

remove noteLandon

if (noMilk)({
buy milk;
}
}

remove noteMelissa

Yes! It does work! Can you show it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Processes: A Closer Look
	Two threads sharing a CPU
	Slide 7
	Slide 8
	Slide 9
	Debugging non-determinism
	Constraining concurrency
	Goals of synchronization
	“Too much milk” rules
	“Too much milk” principals
	Unsynchronized code will break
	What broke?
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

