
Concurrency: Locks and
synchronization

Slides by Prof. Cox

Constraining concurrency

• Synchronization

• Controlling thread interleavings

• Some events are independent

• No shared state

• Relative order of these events don’t matter

• Other events are dependent

• Output of one can be input to another

• Their order can affect program results

Goals of synchronization

1. All interleavings must give correct result

• Correct concurrent program

• Works no matter how fast threads run

• Important for your projects!

2. Constrain program as little as possible

• Why?

• Constraints slow program down

• Constraints create complexity

“Too much milk” principals

“Too much milk” rules

• The fridge must be stocked with milk

• Milk expires quickly, so never > 1 milk

• Landon and Melissa

• Can come home at any time

• If either sees an empty fridge, must buy milk

• Code (no synchronization)
if (noMilk){
 buy milk;
}

Time

3:00 Look in fridge (no
milk)

3:05 Go to grocery store

3:10 Look in fridge (no
milk)

3:15 Buy milk

3:20 Go to grocery store

3:25 Arrive home, stock
fridge

3:30 Buy milk

3:35 Arrive home, stock
fridge

Too much milk!

Unsynchronized code will break

What broke?

• Code worked sometimes, but not
always

• Code contained a race condition

• Processor speed caused incorrect result

• First type of synchronization

• Mutual exclusion inside critical
sections

Synchronization concepts

• Mutual exclusion

• Ensure 1 thread doing something at a
time

• E.g., 1 person shops at a time

• Code blocks are atomic w/re to each
other

• Threads can’t run code blocks at same
time

Synchronization concepts

• Critical section

• Code block that must run atomically

• “with respect to some other pieces of code”

• If A and B are critical w/re to each other

• Threads mustn’t interleave code from A and B

• A and B mutually exclude each other

• Conflicting code is often same block

• But executed by different threads

• Reads/writes shared data (e.g., screen, fridge)

Back to “Too much milk”

• What is the critical section?

• Landon and Melissa’s critical
sections

• Must be atomic w/re to each other

if (noMilk){
 buy milk;
}

“Too much milk” solution 1

• Assume only atomic load/store

• Build larger atomic section from
load/store

• Idea:

1.Leave notes to say you’re taking care of
it

2.Don’t check milk if there is a note

Solution 1 code

• Atomic operations
• Atomic load: check note

• Atomic store: leave note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Does it work?

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

1 2

3 4

Is this better than no synchronization at all?

What if “if” sections are switched?

What broke?

• Melissa’s events can happen

• After Landon checks for a note

• Before Landon leaves a note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Next solution

• Idea:

• Change the order of “leave note”,
“check note”

• Kind of like a reservation

• Requires labeled notes (else you’ll see
your note)

Does it work?

leave noteLandon
if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Nope. (Illustration of “starvation.”)

What about now?

while (noMilk){
 leave noteLandon
 if(no noteMelissa){
 if(noMilk){
 buy milk;
 }
 }
 remove noteLandon
}

while (noMilk){
 leave noteMelissa
 if(no noteLandon){
 if(noMilk){
 buy milk;
 }
 }
 remove noteMelissa
}

Nope.
(Same starvation problem as before)

Next solution

• We’re getting closer

• Problem

• Who buys milk if both leave notes?

• Solution

• Let Landon hang around to make sure
job is done

Does it work?

leave noteLandon
while (noteMelissa){
 do nothing
}
if (noMilk){
 buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Yes! It does work! Can you show it?

Downside of solution

• Complexity

• Hard to convince yourself it works

• Asymmetric

• Landon and Melissa run different code

• Approach doesn’t apply to > 2 people

• Landon consumes CPU while waiting

• Busy-waiting

• However, only needed atomic load/store

Raising the level of abstraction

• Mutual exclusion with atomic
load/store

• Painful to program

• Wastes resources

• Need more HW support

• Will be covered later

• OS can provide higher level
abstractions

Too much milk solution

leave noteLandon
while (noteMelissa){
 do nothing
}
if (noMilk){
 buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Downside of solution

• Complexity

• Hard to convince yourself it works

• Asymmetric

• Landon and Melissa run different code

• Approach doesn’t apply to > 2 people

• Landon consumes CPU while waiting

• Busy-waiting

• However, only needed atomic load/store

Raising the level of abstraction

• Locks

• Also called mutexes

• Provide mutual exclusion

• Prevent threads from entering a critical
section

• Lock operations

• Lock (aka Lock::acquire)

• Unlock (aka Lock::release)

Lock operations

• Lock: wait until lock is free, then acquire it

• This is a busy-waiting implementation

• We’ll fix this in a few lectures

• Unlock: atomic release lock

do {
 if (lock is free) {
 acquire lock
 break
 }
} while (1)

Must be
atomic with
respect to
other
threads
calling this
code

Too much milk, solution 2

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Block is not
atomic.
Must atomically

• check if lock
is free

• grab it

Why doesn’t the note work as
a lock?

Elements of locking

1. The lock is initially free

2. Threads acquire lock before an action

3. Threads release lock when action completes

4. Lock() must wait if someone else has lock

•. Key idea

• All synchronization involves waiting

•. Threads are either running or blocked

Too much milk with locks?

• Problem?

• Waiting for lock while other buys milk

lock ()
if (noMilk) {
 buy milk
}
unlock ()

lock ()
if (noMilk) {
 buy milk
}
unlock ()

Too much milk “w/o waiting”?

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

Not holding
lock

Only hold lock while handling
shared resource.

What about this?

lock ()
if (noMilk && noNote){
 leave note “at store”
 unlock ()
 buy milk
 stock fridge
 remove note
} else {
 unlock ()
}

lock ()
if (noMilk && noNote){
 leave note “at store”
 unlock ()
 buy milk
 stock fridge
 remove note
} else {
 unlock ()
}

lock ()
if (noMilk

1
2

3 4

Example: thread-safe queue
dequeue () {
 lock (qLock);
 element=NULL;
 if (head != NULL) {
 // if queue non-empty
 if (head->next!=0) {
 // remove head
 element=head->next;
 head->next=
 head->next->next;
 } else {
 element = head;
 head = NULL;
 }
 }
 unlock (qLock);
 return element;
}

enqueue () {
 lock (qLock)
 // ptr is private
 // head is shared
 new_element = new node();
 if (head == NULL) {
 head = new_element;
 } else {
 node *ptr;
 // find queue tail
 for (ptr=head;
 ptr->next!=NULL;
 ptr=ptr->next){}

 ptr->next=new_element;
 }
 new_element->next=0;
 unlock(qLock);
}

What can go wrong?

Thread-safe queue

• Can enqueue unlock anywhere?

• No

• Must leave shared data

• In a consistent/sane state

• Data invariant

• “consistent/sane state”

• “always” true

enqueue () {
 lock (qLock)
 // ptr is private
 // head is shared
 new_element = new node();
 if (head == NULL) {
 head = new_element;
 } else {
 node *ptr;
 // find queue tail
 for (ptr=head;
 ptr->next!=NULL;
 ptr=ptr->next){}

 ptr->next=new_element;
 }
 unlock(qLock); // safe?
 new_element->next=0;
}

Invariants

• What are the queue invariants?

• Each node appears once (from head to null)

• Enqueue results in prior list + new element

• Dequeue removes exactly one element

• Can invariants ever be false?

• Must be

• Otherwise you could never change states

More on invariants

• So when is the invariant broken?

• Can only be broken while lock is held

• And only by thread holding the lock

BROKEN INVARIANT
(CLOSE AND LOCK DOOR)

http://www.flickr.com/photos/jacobaaron/348964486
9/

INVARIANT
RESTORED
(UNLOCK DOOR)

http://www.flickr.com/photos/jacobaaron/348964486
9/

More on invariants

• So when is the invariant broken?

• Can only be broken while lock is held

• And only by thread holding the lock

• Really a “public” invariant

• The data’s state in when the lock is free

• Like having your house tidy before guests arrive

• Hold a lock whenever manipulating
shared data

More on invariants

• What about reading shared
data?

• Still must hold lock

• Else another thread could break
invariant

• (Thread A prints Q as Thread B
enqueues)

How about this?
I’m always
holding a
lock while
accessing
shared
state.

enqueue () {
 lock (qLock)
 // ptr is private
 // head is shared
 new_element = new node();
 if (head == NULL) {
 head = new_element;
 } else {
 node *ptr;
 // find queue tail
 for (ptr=head;
 ptr->next!=NULL;
 ptr=ptr->next){}
 unlock(qLock);
 lock(qLock);
 ptr->next=new_element;
 }
 new_element->next=0;
 unlock(qLock);
}

ptr may not point to
tail after lock/unlock.

Lesson:
• Thinking about individual accesses is not enough
• Must reason about dependencies between accesses

What about Java? Too much milk

• Every object is a lock

• Use synchronized key word (lock =“{“,
unlock=“}”)

synchronized (obj){
 if (noMilk) {
 buy milk
 }
}

synchronized (obj){
 if (noMilk) {
 buy milk
 }
}

Synchronizing methods
public class CubbyHole {
 private int contents;

 public int get() {
 return contents;
 }

 public synchronized void put(int value) {
 contents = value;
 }
}

• What does this mean? What is the lock?

• “this” is the lock

Synchronizing methods
public class CubbyHole {
 private int contents;

 public int get() {
 return contents;
 }

 public void put(int value) {
 synchronized (this) {
 contents = value;
 }
 }
}

• Equivalent to “synchronized (this)” block

Intro to ordering constraints

• Say you want dequeue to wait while the
queue is empty

• Can we just busy-wait?

• No!

• Still holding lock

dequeue () {
 lock (qLock);
 element=NULL;
 while (head==NULL) {}
 // remove head
 element=head->next;
 head->next=NULL;
 unlock (qLock);
 return element;
}

Release lock before spinning?

dequeue () {
 lock (qLock);
 element=NULL;
 unlock (qLock);
 while (head==NULL) {}
 lock (qLock);
 // remove head
 element=head->next;
 head->next=NULL;
 unlock (qLock);
 return element;
}

 What can go wrong?
 Head might be NULL when
 we try to remove entry

One more try

• Does it work?

• Seems ok

• Why?

• ShS protected

• What’s wrong?

• Busy-waiting

• Wasteful

dequeue () {
 lock (qLock);
 element=NULL;
 while (head==NULL) {
 unlock (qLock);
 lock (qLock);
 }
 // remove head
 element=head->next;
 head->next=NULL;
 unlock (qLock);
 return element;
}

Ideal solution

• Would like dequeueing thread to “sleep”

• Add self to “waiting list”

• Enqueuer can wake up when Q is non-empty

• Problem: what to do with the lock?

• Why can’t dequeueing thread sleep with lock?

• Enqueuer would never be able to add

Release the lock before sleep?

dequeue () {
 acquire lock
 …
 if (queue empty) {
 release lock
 add self to wait list
 sleep
 acquire lock
 }
 …
 release lock
}

enqueue () {
 acquire lock
 find tail of queue
 add new element
 if (dequeuer waiting){
 remove from wait list
 wake up dequeuer
 }
 release lock
}

Does this work?

Release the lock before sleep?

dequeue () {
 acquire lock
 …
 if (queue empty) {
 release lock
 add self to wait list
 sleep
 acquire lock
 }
 …
 release lock
}

enqueue () {
 acquire lock
 find tail of queue
 add new element
 if (dequeuer waiting){
 remove from wait list
 wake up dequeuer
 }
 release lock
}

2
1

3

Thread can sleep forever

Release the lock before sleep?

dequeue () {
 acquire lock
 …
 if (queue empty) {
 add self to wait list
 release lock
 sleep
 acquire lock
 }
 …
 release lock
}

enqueue () {
 acquire lock
 find tail of queue
 add new element
 if (dequeuer waiting){
 remove from wait list
 wake up dequeuer
 }
 release lock
}

Release the lock before sleep?

dequeue () {
 acquire lock
 …
 if (queue empty) {
 add self to wait list
 release lock
 sleep
 acquire lock
 }
 …
 release lock
}

enqueue () {
 acquire lock
 find tail of queue
 add new element
 if (dequeuer waiting){
 remove from wait list
 wake up dequeuer
 }
 release lock
}

2
1

3

Problem: missed wake-up
Note: this can be fixed, but it’s
messy

In Monday's Class

• Mutual exclusion is necessary,
but insufficient

• Still need ordering constraints

• Often must wait for something to
happen

• Use something called “monitors”

	Slide 1
	Constraining concurrency
	Goals of synchronization
	“Too much milk” principals
	“Too much milk” rules
	Unsynchronized code will break
	What broke?
	Synchronization concepts
	Synchronization concepts
	Back to “Too much milk”
	“Too much milk” solution 1
	Solution 1 code
	Does it work?
	What broke?
	Next solution
	Does it work?
	What about now?
	Next solution
	Does it work?
	Downside of solution
	Raising the level of abstraction
	Too much milk solution
	Downside of solution
	Raising the level of abstraction
	Lock operations
	Too much milk, solution 2
	Elements of locking
	Too much milk with locks?
	Too much milk “w/o waiting”?
	What about this?
	Example: thread-safe queue
	Thread-safe queue
	Invariants
	More on invariants
	Slide 35
	Slide 36
	More on invariants
	More on invariants
	How about this?
	What about Java? Too much milk
	Synchronizing methods
	Synchronizing methods
	Intro to ordering constraints
	Release lock before spinning?
	One more try
	Ideal solution
	Release the lock before sleep?
	Release the lock before sleep?
	Release the lock before sleep?
	Release the lock before sleep?
	Next class

