Concurrency: Locks and
synchronization

Slides by Prof. Cox

Constraining concurrency

* Synchronization

* Controlling thread interleavings
* Some events are independent

* No shared state

* Relative order of these events don't matter
* Other events are dependent

* Output of one can be input to another

* Their order can affect program results

Goals of synchronization

1. All interleavings must give correct result
* Correct concurrent program

 Works no matter how fast threads run
* Important for your projects!

2. Constrain program as little as possible
e Why?

e Constraints slow program down
* Constraints create complexity

“Too much milk” principals

“Too much milk” rules

 The fridge must be stocked with milk

 Milk expires quickly, so never > 1 milk

« Landon and Melissa
« Can come home at any time
e |f either sees an empty fridge, must buy milk

«_Code._ (,no_s_ynchromzatmn)
if (noMilk){

buy milk;

Unsynchronized code will break

= [— - t
Time . e

3:00 Look in fridge (no

milk)
3:05 Go to grocery store
3:10 Look in fridge (no
milk)
3:15 Buy milk
3:20 Go to grocery store
3:25 Arrive home, stock
fridge
3:30 Buy milk
3:35 Arrive home, stock
fridge

Too much milk!

What broke?

« Code worked sometimes, but not
always

 Code contained a race condition
e Processor speed caused incorrect result
* First type of synchronization

e« Mutual exclusion inside critical
sections

Synchronization concepts

e Mutual exclusion

« Ensure 1 thread doing something at a
time

 E.g., 1 person shops at a time

e Code blocks are atomic w/re to each
other

e Threads can’t run code blocks at same
time

Synchronization concepts

e Critical section

e Code block that must run atomically

o “with respect to some other pieces of code”
 If A and B are critical w/re to each other
 Threads mustn’t interleave code from A and B
A and B mutually exclude each other
« Conflicting code is often same block
« But executed by different threads

 Reads/writes shared data (e.g., screen, fridge)

Back to “Too much milk”

« What is the critical section?

'if (noMilk){ .
buy milk; !

e Landon and Melissa’s critical
sections

e Must be atomic w/re to each other

“Too much milk” solution 1

« Assume only atomic load/store

* Build larger atomic section from
load/store

* Idea:
1.Leave notes to say you're taking care of
it
2.Don’t check milk if there is a note

Solution 1 code

« Atomic operations

« Atomic load: check note

« Atomic store: leave note

'if (noMilk) {

1f (noNote){
leave note;
buy milk;
remove nhote;

Does it work?

if (noMilk) { if (noMilk) {
@ if (noNote){ ’4 1if (noNote){
leave note; leave note;
buy milk; / buy milk;
@ remove note; Oremove note;
} }
} }

Is this better than no synchronization at all?
What if “if” sections are switched?

What broke?

« Melissa’s events can happen
e After Landon checks for a note
e Before Landon leaves a note

J__jj;ippﬂpgpgj;__
leave note;

buy milk;
remove nhote;

Next solution

 ldea:

* Change the order of “leave note”,
“check note”

e Kind of like a reservation

* Requires labeled notes (else you'll see
your note)

It work?

leave notelLandon leave noteMelissa

if (no noteMelissa){ if (no noteLandon)({
if (noMilk)({ if (noMilk)({
buy milk; buy milk;
} }
} }
remove notelLandon remove noteMelissa

Nope. (lllustration of “starvation.”)

What about now?

while (noMilk)({ while (noMilk)({
leave notelLandon leave noteMelissa
if(no noteMelissa){ 1if(no noteLandon){
1f(noMilk){ 1f(noMilk){
buy milk; buy milk;
} }
} }
remove notelLandon remove noteMelissa
} }
Nope.

(Same starvation problem as before)

Next solution

« We’'re getting closer
 Problem
« Who buys milk if both leave notes?

e Solution

 Let Landon hang around to make sure
job Is done

It work?

leave notelLandon leave noteMelissa

while (noteMelissa){ if (no notelLandon){
do nothing if (noMilk)({

} buy milk;

if (noMilk)({ }
buy milk; }

} remove noteMelissa

remove notelLandon

Yes! It does work! Can you show it?

Downside of solution

« Complexity
 Hard to convince yourself it works

« Asymmetric
 Landon and Melissa run different code
 Approach doesn’t apply to > 2 people

« Landon consumes CPU while waiting
« Busy-waiting

« However, only needed atomic load/store

Raising the level of abstraction

e Mutual exclusion with atomic
load/store

e Painful to program

e \Wastes resources
e Need more HW support
« Will be covered later

« OS can provide higher level
abstractions

Too much milk solution

Al
(R 3
&y | /

_Jleave _nptan_dpn_ ___ leave noteMelissa
| while (noteMelissa){ | if (no notelLandon){

do nothing if (noMilk){
L. - . | buy milk;
if (noMilk){ }
buy milk; }
} remove noteMelissa

remove nhotelLandon

Downside of solution

« Complexity
* Hard to convince yourself it works

* Asymmetric
* Landon and Melissa run different code
 Approach doesn’t apply to > 2 people

* Landon consumes CPU while waiting
* Busy-waiting

« However, only needed atomic load/store

Raising the level of abstraction

e Locks
e Also called mutexes
e Provide mutual exclusion

* Prevent threads from entering a critical
section

* Lock operations
* Lock (aka Lock: :acquire)
 Unlock (aka Lock: :release)

Lock operations

 Lock: wait until lock is free, then acquire it

do {
if (lock is free) { Must be
acquire lock atomic with
break respect to
} other
} while (1) threads

calling this
* This is a busy-waiting implementationcode

« We'll fix this in a few lectures

e Unlock: atomic release lock

Too much milk, solution 2

""t \

if (noMilk) {
1f (noNote)({
leave note;

Block is not
atomic.
Must atomically

buy milk; . check if lock
remove hote; -
} Is free
* grab it

}

Why doesn’t the note work as
a lock?

Elements of locking

. The lock is initially free
. Threads acquire lock before an action
. Threads release lock when action completes

2 W N =

. Lock() must wait if someone else has lock

Key idea
* All synchronization involves waiting

. Threads are either running or blocked

Too much milk with locks?

lock () lock ()

if (noMilk) { if (noMilk) {
buy milk buy milk

} }

unlock () unlock ()

 Problem?
 Waiting for lock while other buys milk

Too much milk “w/o waiting”?

lock () lock ()

if (noNote && noMilk){ if (noNote && noMilk){
leave note “at_ store” leave note “at store”

unlock () Not holding unlock ()

buy milk - lock buy milk
lock () lock ()
remove note remove note
unlock () unlock ()

} else { } else {
unlock () unlock ()

} }

Only hold lock while handling
shared resource.

What about this?

lock () lock ()

if (noMilk && noNote)({ 2 if (noMilk && noNote)({
“. leave note “at store” leave note “at store”
— unlock () unlock ()
buy milk buy milk
stock fridge CED stock fridge
‘E) remove note remove note
} else { } else {
unlock () unlock ()
} }

Example: thread-safe queue

enqueue () {

lock (qLock)

new_element = new node();
if (head == NULL) {

head = new_element;
} else {

node *ptr;

for (ptr=head;
ptr->next!=NULL;
ptr=ptr->next){}

ptr->next=new_element;

}

new_element->next=0;
unlock(qLock);

dequeue () {
lock (qLock);
element=NULL;
if (head !'= NULL) {

if (head->next!=0) {

element=head->next;
head->next=
head->next->next;
} else {
element = head;
head = NULL;
}

}
unlock (qLock);

return element;

}

What can go wrong?

Thread-safe queue

* Can enqueue unlock anywhere?
* No

lock (qLock)

e Must leave shared data

new_element = new node();
. if (head == NULL) {
* In a COﬂSlStentlsane State head = new_element:
} else {
node *ptr;

e Data invariant

for (ptr=head;

e “consistent/sane state” ptr->next!=NULL;
ptr=ptr->next){}

¢ “alwayS" true ptr->next=new_element;

}
unlock(qLock);

new_element->next=0;

Invariants

* What are the queue invariants?
« Each node appears once (from head to null)
* Enqueue results in prior list + new element

« Dequeue removes exactly one element

 Can invariants ever be false?
 Must be
* Otherwise you could never change states

More on Invariants

* So when is the invariant broken?
 Can only be broken while lock is held
 And only by thread holding the lock

IVARIAN

ANﬁs‘TOQ,K DOOR)

More on Invariants

* So when is the invariant broken?
 Can only be broken while lock is held
 And only by thread holding the lock

* Really a “public” invariant
 The data’s state in when the lock is free

* Like having your house tidy before guests arrive

 Hold a lock whenever manipulating
shared data

More on Invariants

« What about reading shared
data?

e Still must hold lock

e Else another thread could break
Invariant

* (Thread A prints Q as Thread B
engueues)

How about this?

enqueue () {

I;m always lock (qLock)

holding a :
. new_element = new node();
lock while if (head == NULL) {
. head = new_element;
accessing } else {
Shared node *ptr;
state. for (ptr=head;

ptr->next!=NULL;
i ptr=ptr->next){}

pt_r may not point to unlock(qLock)
tail after lock/unlock. lock(qLock);

ptr->next=new_element;

}

new_element->next=0;
unlock(qLock);

Lesson:
 Thinking about individual accesses is not enough
* Must reason about dependencies between accesses

What about Java? Too much milk

3
1
r
5 {m
/

synchronized (obj){ synchronized (obj){
if (noMilk) { if (noMilk) {
buy milk buy milk
} }
} }

 Every object is a lock

 Use synchronized key word (lock =“{“,
unlock="}")

Synchronizing methods

public class CubbyHole {
private int contents;

public int get() {
return contents;

}

public synchronized void put(int value) {
contents = value;

}
}

e What does this mean? What is the lock?
e “this” Is the lock

Synchronizing methods

public class CubbyHole {
private int contents;

public int get() {
return contents;

}

public void put(int value)
synchronized (this) {
contents = value;

}
}

 Equivalent to “synchronized (this)” block

Intro to ordering constraints

« Say you want dequeue to wait while the
queue is empty

« Can we just busy-wait?
dequeue () {

e NO! lock (qLock);

. Still holding lock element=NULL;
7 e while (head==NULL) {}

element=head->next;
head->next=NULL;
unlock (qLock);
return element;

}

Release lock before spinning?

dequeue () {
lock (qLock);
element=NULL;
unlock (qLock);
What can go wrong? esssss \hile (head==NULL) {}
Head might be NULL when 1lock (qLock);
we try to remove entry // remove head
element=head->next;
head->next=NULL;
unlock (qLock);
return element;

One more try

dequeue () {

« Does It work? lock (qlock);
element=NULL;

e Seems ok while (head==NULL) {
unlock (qLock);
o Why? } lock (qgLock);

e ShS protected

« What’s wrong?
e Busy-waiting
« Wasteful

element=head->next;
head->next=NULL;
unlock (qLock);
return element;

}

|deal solution

* Would like dequeueing thread to “sleep”
* Add self to “waiting list”
 Enqueuer can wake up when Q is non-empty

* Problem: what to do with the lock?
 Why can’t dequeueing thread sleep with lock?

 Enqueuer would never be able to add

Release the lock before sleep?

enqueue () { dequeue () {
acquire lock acquire lock
find tail of queue .
gdd new element_ _ if (queue empty) {
if (dequeuer waiting){ release lock
remove from wait list add self to wait list
wake up dequeuer sleep
} acquire lock
release lock }
}

release lock

}
Does this work?

Release the lock before sleep?

enqueue () { dequeue () {

acquire lock acquire lock
find tail of queue .
add new element ‘ﬂ' if (queue empty) {

@) if (dequever waiting){ release lock

— remove from wait list add self to wait list
wake up dequeuer ‘E) sleep

} acquire lock

release lock }

release lock

}
Thread can sleep forever

Release the lock before sleep?

enqueue () { dequeue () {
acquire lock acquire lock
find tail of queue

add new element if (queue empty) {

if (dequeuer waiting)({ add self to wait
remove from wait list release lock
wake up dequeuer sleep

} acquire lock

release lock }

release lock

}

Release the lock before sleep?

enqueue () { dequeue () {

acquire lock acquire lock

find tail of queue .

add new element ‘ﬂ. if (queue empty) {

@) if (dequever waiting){ add self to wait list

remove from wait list release lock
wake up dequeuer ‘E) sleep

} acquire lock

release lock }

release lock

}

In Monday's Class

* Mutual exclusion Is necessary,
but insufficient

* Still need ordering constraints

* Often must wait for something to
happen

* Use something called “monitors”

	Slide 1
	Constraining concurrency
	Goals of synchronization
	“Too much milk” principals
	“Too much milk” rules
	Unsynchronized code will break
	What broke?
	Synchronization concepts
	Synchronization concepts
	Back to “Too much milk”
	“Too much milk” solution 1
	Solution 1 code
	Does it work?
	What broke?
	Next solution
	Does it work?
	What about now?
	Next solution
	Does it work?
	Downside of solution
	Raising the level of abstraction
	Too much milk solution
	Downside of solution
	Raising the level of abstraction
	Lock operations
	Too much milk, solution 2
	Elements of locking
	Too much milk with locks?
	Too much milk “w/o waiting”?
	What about this?
	Example: thread-safe queue
	Thread-safe queue
	Invariants
	More on invariants
	Slide 35
	Slide 36
	More on invariants
	More on invariants
	How about this?
	What about Java? Too much milk
	Synchronizing methods
	Synchronizing methods
	Intro to ordering constraints
	Release lock before spinning?
	One more try
	Ideal solution
	Release the lock before sleep?
	Release the lock before sleep?
	Release the lock before sleep?
	Release the lock before sleep?
	Next class

