Elevator (Disk) Scheduling

What metrics do you consider for
elevator scheduling?

MOST PEOPLE PRESS THE | PRESS THE BUTTON MULTIPLE
ELEVATOR CALL BUT TON TIMES IN RAPID SUCCESSION,
ONCE AND WAIT PATIENTLY, THE ELEVATOR SENSES My

FRUSTRATION AND SERVES

WRONG,
THAT S ME WITH GREAT HASTE.

I'ﬂ'.
AN [¥

| 1 }#"‘ﬁ ’

A

/]

http://www.elevatorworld.com/blogs/?p=1214

Metrics for elevator scheduling

Service time
— Time between pushing the button and exit the elevator
— Approximate
* Wait time
Fairness
— Variation in the service time(s)
Efficiency
— Roughly defined as the amount of total work done (Energy)

— Work done: Number of floors the elevators pass in total

Objective: Minimize service time, Maximize fairness, Minimize
work done

Elevator data structure(s)

* ElevatorController

— Pool/Queue of events
* CallUp/CallDown

* Elevator
— Pool/Queue of requests

* Direction

* Destination floor

First Come First Served (FCFS)

Service in the order in which the requests
are made

— Riders enter and press the destination floor
Simple to implement

No starvation
— Every request is serviced

Is FCFS a good policy?

FCEFS

* The elevator is currently servicing the 10th floor

* Order of requests from riders at the 10th floor:
5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
3 (down), 9 (down), 22 (up), 20 (up)

* To simplify, let us assume everyone gets in

200 o | 22| 12! 9 | 6 | 3| 18| 21| 9 | 12| o | 14| 12| 2 | 33

A
A
y
y

>
«

A

>
«

A

. head
tail

* Total service time (assuming 1 unit time per floor serviced):
5+30+33+12+2+9+18+6+12+2=129,
Avg service time: 12.9

* Can we do better?
e Service the closest floor

A
ul

Shortest Seek Time First (SSTF)

* Go to the closest floor in the work queue

* Reduces total seek time compared to FCFS

* Order of requests from riders at the 10th floor:
5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
3 (down), 9 (down), 22 (up), 20 (up)

2

1

>
%

3

A

p) 5

_tail

>
%

30

35

>
%

13

22

A

21

A

20

A

14

A

head

* Total service time (assuming 1 unit time per floor serviced):
1+3+2+6+1+1+13+30+2+1=60, Avg: 6
* Disadvantages:

* Starvation possible
* Switching directions may slow down the actual service time
* Can we do better? Reorder the requests w.r.t direction

12

10

9
j
1

35

SCAN

* Start servicing in a given direction to the end

13

* Change direction and start servicing again

* Order of requests from riders at the 10th floor:
5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
3 (down), 9 (down), 22 (up), 20 (up)

b

22

21

A

tail

A

20

14

A

A

12

10

A

A

A

head

* Total service time (assuming 1 unit time per floor serviced):
1+4+2+1+10+2+6+1+1+13=41, Avg: 4.1
* Advantages

* Reduces variance in seek time
* Can we do better?

10

A
\L
o)

Circular SCAN (C-SCAN)

* Start servicing in a given direction to the end
* Go to the first floor without servicing any requests; Restart servicing
* Order of requests from riders at the 10th floor:

35

5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
3 (down), 9 (down), 22 (up), 20 (up)

13

22

b

* Total service time (assuming 1 unit time per
1+4+2+1+1+11+2+6+1+1+13=43, Avg:4.3

1 | 21

A

tail

* Advantages

* More fair compared to SCAN

A

20

A

14

A

2

12
N/
1

* Is this what you expect in a real-world elevator?

A

A

head

floor serviced):

A

10

Elevator Scheduling

* At least one difference from C-SCAN
* Direction of pick up
* Order of requests from riders at the 10th floor:
5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),

35

3 (down), 9 (down), 22 (up), 20 (up)

13

22

b

1 | 21

tail

A

A

20

A

14

7 | 12

A

head

/.

10

P

A

/

1

2 |1

tail head

* Total service time (assuming 1 unit time per floor serviced):
1+4+2+1+1+9+2+2+6+1+1+13=43,Av:4.3

* Can you do better?

* We look forward to your lab submissions

10

A
\L
o)

Disk Scheduling

Similar to elevator scheduling

Each disk has a queue of jobs waiting to access
disk

— read jobs

— write jobs

Each entry in queue contains the following

— pointer to memory location to read/write
from/to

— sector number to access
— pointer to next job in the queue

OS usually maintains this queue

Disk Queues

—
&/
Entry 3 Entry 2 Entry 1
Sector Z Sector Y Sector X
Mem Ptr 2 Mem Ptr 1 Mem Ptr O :>
next entry next entry next entry
\ S head / v

tail Disk

CPU Scheduling

* Monday's lecture (10/29)

* More variations
— Priority

— Round robin

— Preemption

— Multilevel queue

Back to synchronization

* Spring 2001 Midterm

Operators are standing by. The customer service line at MegaMurk staffs
a phone bank to answer questions from customers about its products.
Customers calling in are put on hold, where they wait for the next
available customer service advocate to answer their call "in the order it
was received". The economy is in a downturn, so business is sometimes
slow: if there are no customers waiting, available advocates just wait
around for the phone to ring. You are to write procedures to correctly
synchronize the customers and advocates. You need not be concerned
with starvation, fairness, or deadlock.

(a) Synchronize customers and advocates using mutexes and condition
variables.

(b) Synchronize customers and advocates using only semaphores.

	Disk Scheduling
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Disk Queues
	Slide 12
	Slide 13
	Slide 14

