
Data-Intensive Computing Systems

• Total points = 100.

• State all assumptions. For questions where descriptive solutions are required, you will be
graded both on the correctness and clarity of your reasoning.

Question 1 Points 20

The following information is available about relations R and S:

• Relation R is clustered and the blocks of R are laid out contiguously on disk. B(R) = 1000
and T(R) = 10,000.

• Relation S is clustered and the blocks of S are laid out contiguously on disk. B(S) = 500 and
T(S) = 5000.

• M = 101 blocks.

• For simplicity, we will assume that a random access can be done on average in time tr = 20
ms, and a sequential access can be done on average in time ts = 1 ms. For example, scanning
five contiguous blocks on disk, assuming the first access is random, incurs a cost tr + 4ts.

1. [6 Points] How will you extend the “Efficient” Sort-Merge Join algorithm (that we learned
in class) to minimize cost when our cost model distinguishes between random accesses and
sequential accesses? (Note that in class we did not distinguish between random and sequential
accesses.) Compute the cost of your algorithm.

2. [6 Points] Design an algorithm for the block nested-loop join of relations R and S which has
minimum cost when we distinguish between random and sequential disk accesses. Compute
this minimum cost using the parameter values specified above.

3. [8 Points] How does your answer to (2) change if blocks of R are not laid out contiguously
on disk? All other assumptions and parameters remain the same as specified above. Compute
the minimum cost possible for block nested-loop join in this case.

Question 2 Points 20 = 5 + 3 * 5

Suppose you have two clustered relations R(A,X,Y) and S(B,C,Z). You have the following indexes
on S.

• A non-clustering B-tree index on attribute B for S.

• A clustering B-tree index on attribute C for S.

Assume that both indexes are kept entirely in memory always (i.e., you do not need to read them
from disk). Also, assume that all of the tuples of S that have the same value of attribute C are
stored in sequentially adjacent (i.e., contiguous) blocks on disk. That is, if more than one block is
needed to store all of the tuples with some value of C, then these blocks will be located sequentially
on the disk.
You have the following information about R and S:

1



• 100 tuples of R are stored per block on disk. Assume that blocks of R are laid out contiguously
on disk.

• T(R) = 360,000 (number of tuples of R). The values of attribute A in R range from 1 to 360,000.
Assume that A is a key of R, so each tuple in R has a unique value of A in [1,...,360,000].

• 5 tuples of S are stored per block on disk.

• T(S) = 1,200,000 (number of tuples of S).

• V(S,B)= 1200, i.e., there are 1200 distinct values of attribute B in S. Assume that these values
are distributed uniformly in S, so each value of B occurs T(S)/V(S,B) = 1000 times in S.
Furthermore, assume that these values range from 1 to 1200. That is, for each value v in
[1,...,1200], there are 1000 tuples in S with S.B = v.

• V(S,C)= 120,000, i.e., there are 120,000 distinct values of attribute C in S. Assume that these
values are distributed uniformly in S, so each value of C occurs T(S)/V(S,C) = 10 times in S.
Furthermore, assume that these values range from 1 to 120,000. That is, for each value v in
[1,...,120,000], there are 10 tuples in S with S.C = v.

You want to execute the following query:

SELECT *

FROM R, S

WHERE R.A = S.B AND R.A = S.C

We present you with two indexed-nested-loop-join plans:

Plan 1:

For every block BLK of R, retrieved using a scan of R
For every tuple r of BLK

Use the index on B for S to retrieve all of the tuples s of S such that s.B=r.A
For each of these tuples s, if s.C=r.A, output r.A, r.X, r.Y, s.B, s.C, s.Z

Plan 2:

For every block BLK of R, retrieved using a scan of R
For every tuple r of BLK

Use the index on C for S to retrieve all of the tuples s of S such that s.C=r.A
For each of these tuples s, if s.B=r.A, output r.A, r.X, r.Y, s.B, s.C, s.Z

Note that both plans read R one block at a time, and retrieve all S tuples that join with tuples in
the current block of R (using one of the indexes on S) before reading the next block of R.

a. Analyze each of these plans in terms of their behavior regarding accesses to disk. For each plan
compute the number of sequential accesses and the number of random accesses to blocks on
disk. Given that random accesses are at least an order of magnitude costlier than sequential
accesses, which of the plans performs better?

b. Assume all statistics remain the same except for the number of tuples of S stored per block on
disk, which now reduces to 2 (from 5). How does this change your answer to (a)?

c. Let the variable X represent the number of tuples of S stored per block on disk. Assuming
all other statistics remain the same as before, what values of X in [1,...,10,000] will make the
worse plan of (a) perform better than the other?

d. Which plan is better if both indexes are non-clustering, and everything else remains as specified
originally in the question? Note that now tuples of S that have the same value of attribute C
are not stored in contiguous blocks on disk.

2



e. Which plan is better if both indexes are non-clustering, and V(S,B) = 180,000? There are
180,000 distinct values of attribute B in S. Assume that these values range from 1 to 180,000
and are distributed uniformly in S. V(S,C)= 120,000 as before.

f. Suppose everything remains as specified originally in the question except that values of at-
tribute B come from the domain 1-3,600,000. (That is, the domain is positive integers 1,2,3
and so on up to 3.6 million.) Assume that the values of attribute B in S are distributed
uniformly in this domain, and V(S,B) = 1,200,000. Which plan is better in this scenario?

Question 3 Points 10

A set of indexes is called a covering index set for a query if the query can be evaluated using
these indexes only (i.e, without fetching any data records). For queries Q1 and Q2 below:

(a) Give a minimal covering index set

(b) Give an efficient technique (need not be a query plan; an explanation will suffice) to evaluate
the query using your minimal covering index set from (a)

(c) Compute the number of disk blocks read by your technique from (b)

Queries Q1 and Q2 are as follows:

Q1: SELECT R.a

FROM R, S

WHERE R.a = S.a

Q2: SELECT DISTINCT R.a

FROM R, S, T

WHERE R.a > S.a AND S.a >= T.b

Note that SQL’s DISTINCT operator used in Q2 will eliminate duplicates from Q2’s result.
DISTINCT is the duplicate-eliminating projection that we considered in a previous homework.
DISTINCT is also discussed in Section 6.4.1 of the textbook.

Make the following assumptions about relations R(a,b), S(a,b), and T(a,b) (Note: you may not
need all this information to compute the number of disk blocks accessed):

• R.a is the primary key of R, S.a is the primary key of S, and T.a is the primary key of T.

• All relations are clustered.

• B(R) = 1000, B(S) = 10,000, and B(T) = 100,000

• T(R) = 10,000, T(S) = 50,000, and T(T) = 300,000. (T(T) denotes the number of tuples in
relation T.)

• There are clustering B-tree indexes on R.a, S.a, and T.a. There are non-clustering B-tree
indexes on R.b, S.b, and T.b.

• For simplicity of computation, assume that all indexes contain two levels, with the root node
in the first level and some number of leaf nodes in the second level. The indexes on R.a and
R.b contain 25 leaf nodes each; the indexes on S.a and S.b contain 250 leaf nodes each; and
the indexes on T.a and T.b contain 2500 leaf nodes each.

• Assume that root nodes of all indexes are always in memory so that access to a root node
never incurs an I/O.

3



Question 4 Points 10

Consider the join of four relations R1 ✶ R2 ✶ R3 ✶ R4. We have not shown the join predicates
since they are not relevant to this problem. Consider two plans for joining these relations: one using
a left-deep join tree (Figure 1) and one using a right-deep join tree (Figure 2). X1, X2, X3, X4
represent various intermediate relations produced in the plans. All the join operators are tuple-
based, nested loop joins. The plans are fully pipelined. Only 4 blocks of memory are available. We
have B(R1) = B(R2) = B(R3) = B(R4) = 1000 blocks, and T (R1) = T (R2) = T (R3) = T (R4) =
T (X1) = T (X2) = T (X3) = T (X4) = 10000 tuples. What is the number of disk I/Os for the
left-deep plan and the right-deep plan?

R1 R2

R3

R4X1

X2

Figure 1: Left-deep plan

R1

R2

R3 R4

X3

X4

Figure 2: Right-deep plan

Question 5 Points 15

Consider the following query over relations R1–R4:

R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4

Suppose there are three possible access methods for each Ri and two possible join methods for each
join. Assume that all combinations of access and join methods are feasible, and that both join
methods are asymmetric (e.g., the two join methods could be Nested-Loop join and Hash join, both
of which are asymmetric).

1. [4 Points] How many different left-deep plans are there for this query?

2. [5 Points] How many different bushy plans are there for this query? Note that a plan that is
not left-deep or right-deep is bushy.

3. [6 Points] How would your answer to (1) change if there is only one join method, but this join
method is symmetric (e.g., the join method could be Sort-Merge join, which is symmetric)?
Compute the number of different left-deep plans in this case.

Question 6 Points 15

The following information is available about relations R and S:

4



• Relation R is clustered and the blocks of R are laid out contiguously on disk. B(R) = 1250
and T(R) = 12,500.

• Relation S is clustered and the blocks of S are laid out contiguously on disk. B(S) = 1000 and
T(S) = 10000.

• M = 101 blocks.

a. For this question, assume that our cost model is the same as the one we have been using in
class, namely, the total number of blocks read or written, excluding the writes for the final
output. Compute the number of buckets and the cost for the most efficient Hybrid Hash Join
of relations R and S.

b. Suppose everything in the question remains the same except now M=51. Compute the number
of buckets and the cost for the most efficient Hybrid Hash Join of relations R and S.

Question 7 Points 5

Consider a 3.5 inch disk with 2 magnetic surfaces with 64 tracks per surface, rotating at 3600 rpm. It
has a usable capacity of 2 megabytes (2× 220 bytes). Assume 20% of each track is used as overhead
(gaps). Also, assume that the usable capacity is equally distributed among the tracks.

a. What is the burst bandwidth this disk can support?

b. What is the sustained bandwidth this disk can support?

c. What is the average rotational latency?

d. Assuming the average seek time is 16 ms, what is the average time to fetch a 2-kilobyte (2×210

bytes) sector?

Question 8 Points 5

Consider a disk with the following properties:

• There are four platters providing eight surfaces.

• There are 213 = 8192 tracks per surface.

• There are (on average) 28 = 256 sectors per track.

• There are 29 = 512 bytes per sector.

• The disk rotates at 3840 rpm.

• The block size is 212 = 4096 bytes.

• Assume 10% of each track is used as overhead.

• The time it takes the head to move n tracks is 1 + n/500 milliseconds.

Suppose that we know that the last I/O request accessed cylinder 3000. (Cylinders are numbered
sequentially: 1, 2, . . . , 8192.)

a. What is the expected (average) number of cylinders that will be traveled due to the very next
I/O request to this disk?

b. What is the expected block access time for the next I/O, again given that the head is on
cylinder 3000 initially?

5


