
Pig, a high level data

processing system on Hadoop

2

Is MapReduce not Good Enough?

 Restricted programming model

 Only two phases

 Job chain for long data flow

 Too many lines of code even for simple logic

 How many lines do you have for word count?

 Programmers are responsible for this

3

Pig to the Rescue

 High level dataflow language (Pig Latin)

 Much simpler than Java

 Simplifies the data processing

 Puts the operations at the apropriate phases

 Chains multiple MR jobs

4

How Pig is used in the Industry

 At Yahoo, 70% MapReduce jobs are written in

Pig

 Used to

 Process web logs

 Build user behavior models

 Process images

 Data mining

 Also used by Twitter, LinkedIn, eBay, AOL, ...

5

Motivation by Example

 Suppose we have

user data in one file,

website data in

another file.

 We need to find the

top 5 most visited

pages by users

aged 18-25

6

In MapReduce

7

In Pig Latin

8

Pig runs over Hadoop

9

Wait a minute

 How to map the data to records

 By default, one line → one record

 User can customize the loading process

 How to identify attributes and map them to the

schema

 Delimiter to separate different attributes

 By default, delimiter is tab. Customizable.

10

MapReduce Vs. Pig cont.

 Join in MapReduce

 Various algorithms. None of them are easy to

implement in MapReduce

 Multi-way join is more complicated

 Hard to integrate into SPJA workflow

11

MapReduce Vs. Pig cont.

 Join in Pig
 Various algorithms are already available.

 Some of them are generic to support multi-way join

 No need to consider integration into SPJA workflow. Pig

does that for you!

 A = LOAD 'input/join/A';

 B = LOAD 'input/join/B';

 C = JOIN A BY $0, B BY $1;

 DUMP C;

12

Pig Latin

 Data flow language

 Users specify a sequence of operations to

process data

 More control on the process, compared with

declarative language

 Various data types are supported

 Schema is supported

 User-defined functions are supported

13

Statement

 A statement represents an operation, or a stage in

the data flow

 Usually a variable is used to represent the result of

the statement

 Not limited to data processing operations, but also

contains filesystem operations

14

Schema

 User can optionally define the schema of the input

data

 Once the schema of the source data is given, the

schema of the intermediate relation will be induced

by Pig

15

Schema cont.

 Why schema?

 Scripts are more readable (by alias)

 Help system validate the input

 Similar to Database?

 Yes. But schema here is optional

 Schema is not fixed for a particular dataset,

but changable

16

Schema cont.

 Schema 1
A = LOAD 'input/A' as (name:chararray, age:int);

B = FILTER A BY age != 20;

 Schema 2
A = LOAD 'input/A' as (name:chararray, age:chararray);

B = FILTER A BY age != '20';

 No Schema
A = LOAD 'input/A' ;

B = FILTER A BY A.$1 != '20';

17

Data Types

 Every attribute can always be interpreted as a

bytearray, without further type definition

 Simple data types

 For each attribute

 Defined by user in the schema

 Int, double, chararray ...

 Complex data types

 Usually contructed by relational operations

 Tuple, bag, map

18

Data Types cont.

 Type casting

 Pig will try to cast data types when type

inconsistency is seen.

 Warning will be thrown if casting fails. Process

still goes on

 Validation

 Null will replace the inconvertable data type in

type casting

 User can tell a corrupted record by detecting

whether a particular attribute is null

19

Date Types cont.

20

Operators

 Relational Operators

 Represent an operation that will be added to

the logical plan

 LOAD, STORE, FILTER, JOIN,

FOREACH...GENERATE

21

Operators

 Diagnostic Operators

 Show the status/metadata of the relations

 Used for debugging

 Will not be integrated into execution plan

 DESCRIBE, EXPLAIN, ILLUSTRATE.

22

Functions

 Eval Functions

 Record transformation

 Filter Functions

 Test whether a record satisfies particular predicate

 Comparison Functions

 Impose ordering between two records. Used by ORDER

operation

 Load Functions

 Specify how to load data into relations

 Store Functions

 Specify how to store relations to external storage

23

Functions

 Built-in Functions

 Hard-coded routines offered by Pig.

 User Defined Function (UDF)

 Supports customized functionalities

 Piggy Bank, a warehouse for UDFs

View of Pig from inside

25

Pig Execution Modes

 Local mode

 Launch single JVM

 Access local file system

 No MR job running

 Hadoop mode

 Execute a sequence of MR jobs

 Pig interacts with Hadoop master node

26

Compilation Compilation

27 04/13/10

Parsing

 Type checking with schema

 Reference verification

 Logical plan generation

 One-to-one fashion

 Independent of execution platform

 Limited optimization

 No execution until DUMP or STORE

Parsing

28 04/13/10

Logic Plan

A=LOAD 'file1' AS (x, y, z);

B=LOAD 'file2' AS (t, u, v);

C=FILTER A by y > 0;

D=JOIN C BY x, B BY u;

E=GROUP D BY z;

F=FOREACH E GENERATE
 group, COUNT(D);

STORE F INTO 'output';

LOAD

FILTER

LOAD

JOIN

GROUP

FOREACH

STORE

Logical Plan

29 04/13/10

Physical Plan

 1:1 correspondence with most logical operators

 Except for:

 DISTINCT

 (CO)GROUP

 JOIN

 ORDER

Physical Plan

 Two typical types of join

 Map-side join

 Reduce-side join

Joins in MapReduce

Map tasks:

Table R

Table L

Map-side Join

REDUCE-SIDE JOIN

Drawback: all records may have to be buffered

Out of memory

 The key cardinality is small

 The data is highly skewed

L: ratings.dat

R: movies.dat

Pairs: (key, targeted record)

shuffle input map reduce output

1::1193::5::978300760

1::661::3::978302109

1::661::3::978301968

1::661::4::978300275

1 ::1193::5::97882429

661::James and the Glant…

914::My Fair Lady..

1193::One Flew Over the…

2355::Bug’s Life, A…

3408::Erin Brockovich…

1193, L:1::1193::5::978300760

661, L :1::661::3::978302109

661, L :1::661::3::978301968

661, L :1::661::4::978300275

1193, L :1 ::1193::5 ::97882429

661, R:661::James and the Gla…

914, R: 914::My Fair Lady..

1193, R: 1193::One Flew Over …

2355, R: 2355::Bug’s Life, A…

3408, R: 3408::Erin Brockovi…

(661, …)

(661, …)

(661, …)

(1193, …)

(1193, …)

(661, …)

(2355, …)

(3048, …)

(914, …)

(1193, …)

(661,

[L :1::661::3::97…],

[R:661::James…],

[L:1::661::3::978…],

[L :1::661::4::97…])

(2355, [R:2355::B’…])

(3408, [R:3408::Eri…])

(1,Ja..,3, …)

(1,Ja..,3, …)

(1,Ja..,4, …)

Group by join key

Buffers records into two sets

according to the table tag

+

Cross-product

 {(661::James…) }

 X

 (1::661::3::97…),

 (1::661::3::97…),

 (1::661::4::97…)

Phase /Function Improvement

Map Function Output key is changed to a composite of the join key and the

table tag.

Partitioning function Hashcode is computed from just the join key part of the

composite key

Grouping function Records are grouped on just the join key

33 04/13/10

Physical Plan

 1:1 correspondence with most logical operators

 Except for:

 DISTINCT

 (CO)GROUP

 JOIN

 ORDER

Physical Plan

34 04/13/10

LOAD

FILTER

LOAD

JOIN

GROUP

FOREACH

STORE

LOAD

FILTER

LOAD

LOCAL REARRANGE

PACKAGE

FOREACH

STORE

GLOBAL REARRANGE

LOCAL REARRANGE

PACKAGE

FOREACH

GLOBAL REARRANGE

35 04/13/10

Physical Optimization

 Always use combiner for pre-aggregation

 Insert SPLIT to re-use intermediate result

 Early projection (logical or physical?)

Physical Optimizations

36 04/13/10

MapReduce Plan

 Determine MapReduce boundaries

 GLOBAL REARRANGE

 STORE/LOAD

 Some operations are done by MapReduce
framework

 Coalesce other operators into Map & Reduce
stages

 Generate job jar file

MapReduce Plan

37 04/13/10

LOAD

FILTER

LOAD

LOCAL REARRANGE

PACKAGE

FOREACH

STORE

GLOBAL REARRANGE

LOCAL REARRANGE

PACKAGE

FOREACH

GLOBAL REARRANGE

FILTER

LOCAL REARRANGE

Map

Reduce

Map

Reduce

PACKAGE

FOREACH

LOCAL REARRANGE

PACKAGE

FOREACH

38

Execution in Hadoop Mode

 The MR jobs not dependent on anything in

the MR plan will be submitted for execution

 MR jobs will be removed from MR plan after

completion

 Jobs whose dependencies are satisfied are now

ready for execution

 Currently, no support for inter-job fault-

tolerance

Discussion of the Two

Readings on Pig (SIGMOD

2008 and VLDB 2009)

40

Discussion Points for Reading 1

 Examples of the nested data model,

CoGroup, and Join (Figure 2)

 Nested query in Section 3.7

41

What are the Logical, Physical, and

MapReduce plans for:

STORE answer INTO ‘/user/alan/answer’;

42
04/13/10

LOAD LOAD

LOCAL REARRANGE

PACKAGE

FOREACH

STORE

GLOBAL REARRANGE

LOCAL REARRANGE

PACKAGE

FOREACH

GLOBAL REARRANGE

FILTER

LOCAL REARRANGE

Map

Reduce

Map

Reduce

PACKAGE

FOREACH

LOCAL REARRANGE

PACKAGE

FOREACH

FILTER

B,D

R.A = “c”

R

S

Recall Operator Plumbing

 Materialization: output of one operator written to

disk, next operator reads from the disk

 Pipelining: output of one operator directly fed to

next operator

B,D

R.A = “c”

R

S

Materialization

Materialized here

B,D

R.A = “c”

R

S

Iterators: Pipelining

 Each operator supports:

• Open()

• GetNext()

• Close()

46 04/13/10

FILTER

LOCAL REARRANGE

Map

Reduce
PACKAGE

FOREACH

How do these operators execute in Pig?

 Hints (based on Reading 2):

 What will Hadoop’s map

function and reduce function

calls do in this case?

 How does each operator work?

What does each operator do?

(Section 4.3)

 Outermost operator graph

(Section 5)

 Iterator model (Section 5)

47 04/13/10

Branching Flows in Pig

 Hints (based on Reading 2,

Section 5.1, last two paras

before Section 5.1.1):

 Outermost data flow graph

 New pause signal for iterators

clicks = LOAD `clicks'

AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO

pages IF pageid IS NOT NULL,

links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,

CanonicalizePage(pageid) AS cpage,

viewedat;

clinks = FOREACH links GENERATE userid,

CanonicalizeLink(linkid) AS clink,

viewedat;

STORE cpages INTO `pages';

STORE clinks INTO `links';

48 04/13/10

Branching Flows in Pig

 Draw the MapReduce plan for this query

clicks = LOAD `clicks'

AS (userid, pageid, linkid, viewedat);

byuser = GROUP clicks BY userid;

result = FOREACH byuser {

 uniqPages = DISTINCT clicks.pageid;

 uniqLinks = DISTINCT clicks.linkid;

 GENERATE group, COUNT(uniqPages),

COUNT(uniqLinks);

};

49 04/13/10

Branching Flows in Pig

 Draw the MapReduce plan for this query

clicks = LOAD `clicks'

AS (userid, pageid, linkid, viewedat);

byuser = GROUP clicks BY userid;

result = FOREACH byuser {

 fltrd = FILTER clicks BY viewedat IS NOT

NULL;

 uniqPages = DISTINCT fltrd.pageid;

 uniqLinks = DISTINCT fltrd.linkid;

 GENERATE group, COUNT(uniqPages),

COUNT(uniqLinks);

};

Performance and future

improvement

51

Pig Performance

Images from http://wiki.apache.org/pig/PigTalksPapers

52

Future Improvements

 Query optimization

 Currently rule-based optimizer for plan rearrangement

and join selection

 Cost-based in the future

 Non-Java UDFs

 Grouping and joining on pre-partitioned/sorted data

 Avoid data shuffling for grouping and joining

 Building metadata facilities to keep track of data layout

 Skew handling

 For load balancing

53

 Get more information at the Pig website

 You can work with the source code to

implement something new in Pig

 Also take a look at Hive, a similar system

from Facebook

54

References

 Some of the content come from the following
presentations:

 Introduction to data processing using Hadoop and
Pig, by Ricardo Varela

 Pig, Making Hadoop Easy, by Alan F. Gates

 Large-scale social media analysis with Hadoop,
by Jake Hofman

 Getting Started on Hadoop, by Paco Nathan

 MapReduce Online, by Tyson Condie and Neil
Conway

