
Hadoop EKG: Using Heartbeats to Propagate
Resource Utilization Data

Trevor G. Reid
Duke University
tgr3@duke.edu

Jian Wei Gan
Duke University
jg76@duke.edu

Abstract—Hadoop EKG is a modification to the Hadoop
codebase that allows for the real-time transmission of resource
statistics of running nodes to the JobTracker. These statistics
include information such as CPU usage, disk IO bandwidth,
and available memory of the system. In this paper, we evaluate
our design choices in piggybacking resource utilization data on
heartbeats, and explain how this data can be useful for real-time
task scheduling decisions.

Our evaluation of the different options–metrics, counters
and heartbeats–show that heartbeats are the most suitable for
propagation of real-time resource utilization data.

I. INTRODUCTION

Hadoop EKG is a modification to the Hadoop codebase that
allows for the real-time transmission of resource statistics of
running nodes to the JobTracker. These statistics include infor-
mation such as CPU usage, disk IO bandwidth, and available
memory of the system. Hadoop EKG was initially developed
due to our desire to develop a more useful task tracker interface
that could display more up-to-date and valuable information
to a Hadoop user about their map-reduce job. However,
thanks to the guidance of Professor Babu and the help of his
graduate students our focus shifted from how to display more
useful information to what that useful information is and to
whom it would be useful. Although HadookEKG was initially
developed with the Hadoop user in mind, as our project took
shape our focus shifted towards Hadoop itself, particularly in
the scheduler. The final iteration of Hadoop EKG was designed
in that hopes that a more efficient task-scheduling algorithm
could be developed that factors in current resource utilization
of nodes to intelligently assign tasks.

The guiding principle when designing Hadoop EKG was
to create an integrated, lightweight means of propagating
resource usage statistics from TaskTrackers to the JobTracker.
Since a channel for transmitting information between these
two entities already exists in the heartbeat, we decided to
piggyback on this protocol when transmitting the resource
statistics. This allowed for a fairly simple implementation
that conformed to Hadoops existing design and required no
serious changes to the overall code infrastructure. Since we
were primarily altering the information sent in heartbeat, most
of code modifications were to the TaskTracker and related
classes. Also, a plug-in was created in order to actually obtain
the resource usage statistics from the operating system.

II. DESIGN GOALS AND IMPLEMENTATION OPTIONS

A. What to Propagate

We wanted to propagate data from the TaskTracker to the
JobTracker that would be useful for the JobTracker to schedule
tasks. Another question we wanted to answer was what data
makes sense to propagating close to real-time. We decided on
propagating JobTracker resource utilization because such data
would be useful for tagging tasks with what resource they
consume a lot of. E.g. you can tag a task as CPU intensive if
when running the task, the TaskTracker has CPU usage above
a certain threshold. If we can tag tasks with what resources
they are using a lot of, we can make real-time scheduling
decisions based on this. E.g. you should not schedule many
CPU intensive tasks together.

We decided to propagate 3 main types of resource utilization
data: CPU usage, memory usage (both virtual and physical)
and disk I/O. We decided on these 3 pieces of information
because they are the main ways a Task can choke up resources
on a TaskTracker.

B. How to Propagate

Our main design goals for Hadoop EKG were to build a
system that could propagate information from the TaskTrack-
ers to the JobTracker in real time, and for that system to be
lightweight.

First, we had to decide what mechanism we were going to
use to propagate information from the TaskTrackers to the
JobTracker. The 3 systems that already existed in Hadoop
were 1. Metrics, 2. Counters and 3. Heartbeats. Metrics can
be run as an external process, while Counters and heartbeats
are propagated within Hadoops MapReduce code, and use a
Java Remote Procedure Call (RPC.) We wanted to leverage
an existing mechanism to propagate data so it would require
minimal modification to the Hadoop code and fit into the
current design.

1) Metrics: Hadoops NameNode, SecondaryNameNode,
DataNode, JobTracker, and TaskTracker daemons all expose
runtime metrics. [2] However, a more thorough way to use
metrics is to use the Ganglia Monitoring System with Hadoop,
which runs as an external process(es) of the Ganglia Monitor-
ing Daemon and Ganglia Metadata Daemon. We decided not
to use Metrics as our propagation mechanism because it was
not a lightweight solution. Ganglia offers real-time monitoring



metrics, but we were looking for a solution for Hadoop users
(as opposed to system administrators) and did not want to
require installing heavyweight monitoring tools. Another issue
with using metrics was to get the data from the monitoring
daemons back to the JobTracker daemon, which required an
inter process communication set up, which would have made
the system even more complex.

2) Counters: Hadoop maintains some built-in counters for
every job, which report various metrics for your job. For ex-
ample, there are counters for the number of bytes and records
processed, which allows you to confirm that the expected
amount of input was consumed and the expected amount of
output was produced. [?] Counters are propagated through
RPC and Counters are kept track of within the TaskTracker
daemon. There is also an API to add custom Counters, which
makes it a great way to propagate data in a lightweight way.
However, theyre not sent as often as heartbeats because they
have are larger and more bandwidth-heavy. The default counter
interval is 1 minute, while the minimum heartbeat interval is 3
seconds. This means that theyre less real-time than heartbeats.

3) Heartbeats: Hadoop has 2 types of heartbeats, one for
MapReduce and one for HDFS. We looked at the MapReduce
heartbeat since we are trying to propagate data from Task-
Trackers to the JobTracker. Heartbeats are used to propagate
the status of TaskTrackers. Heartbeats are sent every 3 seconds
minimum from the TaskTracker to the JobTracker through
RPC. They are sent less often for larger clusters so the
JobTracker does not have to process too many heartbeats, and
since there is a bandwidth bottleneck at the single JobTracker.

We found heartbeats to be the best mechanism for propa-
gating data because they are lightweight, sent in very short
intervals and already have a ResourceStatus that is propagated
with the heartbeat that is suitable to add more resource data
to.

After deciding on using heartbeats, we had to take into
account the amount of data propagated in each heartbeat
because the heartbeats are sent in a very short time interval,
hence if we propagate too much data with each heartbeat, it
will result in heavy bandwidth usage.

III. IMPLEMENTATION

In this section, we go into detail on how our system was
implemented and on exactly what code we modified. Our im-
plmentation consisted of 1. getting a thorough understanding
of how the system works, 2. porting 0.22 code to work with
0.20.2, and 3. implementing sampling and propagation of more
resource utilization data.

A. Versions

At first we tried to used 0.22-alpha, but the build was
unstable and we had major issues building and running it,
so we decided to go with 0.20.2, since that was what we used
for our programming assignments, and it was stable enough
for us to build and run. A catch here is that in version 0.22,
Hadoop already propagates more resource utilization data from
JobTrackers to TaskTrackers through the heartbeat.

Fig. 1. Hadoop EKG System

B. Heartbeat

In our implementation of using the heartbeat to propagate
data from TaskTrackers to the JobTracker, we wanted to fit
into Hadoops current design as much as possible.

Our system is shown in Figure 1. At every heartbeatInterval
milliseconds, the TaskTracker daemon will prepare a heartbeat
and send it to the JobTracker. This heartbeat consists of
the following data: a TaskTrackerStatus instance inside this
instance, there is a ResourceStatus instance booleans for
justStarted, justInited and askForNewTask a short for last
heartbeatResponseId

The TaskTracker will only update the ResourceStatus data
if askForNewTask is true, i.e. when there are empty map or
reduce slots.

We left this implementation, but we recognize there are
arguments for always updating the ResourceStatus before each
heartbeat instead of only when there are empty slots. If we
update it on every heartbeat, the JobTracker and scheduler
would be able to tag every task with what kind of resource
it uses intensively. However, it incurs the cost of collecting
all the resource utilization data with every heartbeat, even
if the JobTracker cannot schedule any more tasks on that
TaskTracker node.

What follows is a deeper dive into exactly what code we
changed in the respective files:

1) /src/mapred/org/apache/mapred/TaskTracker.java: In the
method transmitHeartBeat(), the TaskTracker prepares the
heartbeat and sends it. If there are empty mapper or reducer
slots, it updates the ResourceStatus instance to be sent with the
TaskTrackerStatus. We modified code after line 1216 to obtain
more resource utilization data and update the ResourceStatus
with it. After which, the heartbeat is transmitted to the
JobTracker through an RPC–jobClient.heartbeat().

We also added functions that obtain these resource status
from the resourceCalculatorPlugin, which defaults to null if



there is no matching resource calculator plugin available. (We
only have a LinuxResourceCalculatorPlugin.)

2) /src/mapred/org/apache/mapred/TaskTrackerStatus.java:
In TaskTrackerStatus, we modified the static inner class
ResourceStatus at around line 58 to contain more instance
variables. Before modification, ResourceStatus was already
used as a class representing a collection of resources on
that TaskTracker, and has fields like totalVirtualMemory.
We added more fields such as cumulativeCpuTime and
diskIOUsage, along with getters and setters to this class.

Also, this class implements the Writable interface so that
it can be written to a buffer to be sent through the network.
Hence, to be able to read and write these fields, we needed to
overwrite the write() and read() methods of the ResourceStatus
class to read and write the extra fields we added. We do this
at around line 314.

3) /src/mapred/org/apache/mapred/JobTracker.java:
We did not need to modify any code in JobTracker.
JobTracker keeps a HashMap of TaskTracker Name to last
TaskTrackerStatus received from that TaskTracker (line
1485). The ResourceStatus instances can be accessed through
taskTrackerStatus.getResourceStatus().

4) /src/webapps/job/machines.jsp: We modified this page
to display the real-time resource utilization on TaskTrackers
that we propagated with the heartbeat. A screenshot of this
page is shown in Figure 2. This display in the JobTracker
is less useful for monitoring, but was more for a proof of
concept that we could obtain all the Resources and propagate
them through the heartbeat. We added the method generate-
TaskTrackerResourceTable() on line 81 that displays a table of
various resource utilization info and what tasks are being run
on each TaskTracker, to show that these Tasks can be tagged
as resource intensive after they go above a certain resource
utilization threshold, e.g. CPU Usage > 60%.

C. Sampling

All data sampled was obtained from the /proc/ direc-
tory in the Linux filesystem. Important files used were:
cpuinfo for obtaining statistics such as number of processors
and their speed, diskstats for IO information, and stat for
CPU usage information. The files mentioned are all in the
/org/apache/mapred/util/util/ package.

1) Disk IO Bandwidth: This calculation is performed in
LinuxResourceCalculatorExtendedPlugin.java.

The information required for this calculation is obtained
from /proc/diskstats which conforms to the format shown in
Table I. The values in diskstats are from bootup onwards.
In order to get an idea of the number of IOs completed the
number of reads issued and number of writes completed were
sampled. To obtain a value for IO rate, the number of IOs
completed and the CPU time at which this information was
sampled were maintained over the period between heartbeat.

Then, a rate of IO was calculated using equation (1).

Ri = Current Reads Issued
Wi = Current Writes Completed

Ri−1 = Old Reads Issued
Wi−1 = Old Writes Completed
CPUi = Current Cpu Time

CPUi−1 = Old Cpu Time

IO Bandwidth =
(Ri +Wi)− (Ri−1 +Wi−1)

CPUi − CPUi−1
(1)

2) CPU Usage: This calculation is performed in LinuxRe-
sourceCalculatorPlugin.java

CPU usage was calculated using the data in /proc/stat which
conforms to the format shown in Table II. In order to get
an idea of CPU usage, the values for time spent on normal,
niced, and system processes were summed together to obtain
the total amount of time the CPU spent executing processes.
In a similar manner to the way IO bandwidth was calculated,
this information is maintained over the period of heartbeat and
percent usage is calculated.

3) Available Memory: This calculation is performed in
LinuxResourceCalculatorPlugin.java

The information necessary of this calculation is in
/proc/meminfo. This was by far the easiest information to
sample because the data simply needed to be parsed from the
file and did not require any previous sample information.

IV. EVALUATION

A. Lightweight and Extensible
The advantage of using the heartbeat to propagate data from

TaskTrackers to JobTracker is that we leverage an existing
mechanism that is very well suited for propagating real-
time data. More importantly, by extending ResourceStatus to
include more resource utilization data, our implementation
fits well into the current Hadoop design. The result is a
very lightweight and easily extensible system for propagating
resource utilization data from TaskTrackers to JobTrackers.

B. Bandwidth Utilization
Our implementation sends 84 bytes of resource utilization

data in the ResourceStatus of each heartbeat. A disadvantage
of our system is that there more data we propagate in each
heartbeat, the heavier the toll we put on bandwidth. This is
especially the case since for large clusters, there are many
TaskTrackers and only 1 JobTracker, which has to receive
heartbeats from all of the TaskTrackers. If the heartbeat were
too large, we would clog up bandwidth to that individual
JobTracker. Hence there is an upper bound on the amount
of data we can propagate through this mechanism.

C. Real-time
We also recognize that the data is only real-time up to the

period of the heartbeat interval, which is a minimum of 3
seconds, and larger for larger clusters. However, this is close
enough to real-time for purposes of the scheduler tagging tasks
as CPU/Disk I/O/Memory intensive.



Fig. 2. JobTracker Machines Webpage

D. Synchronous sampling

Our implementation does sampling synchronously in the
TaskTrackers transmitHeartbeat() function while preparing the
TaskTrackerStatus ResourceStatus before sending the heart-
beat. Our sampling is not expensive to the extent where
we do sampling over a period of time synchronously in the
LinuxResourceCalculatorPlugin, but we need to read from
/proc/, which might require disk I/O, which can be expensive
if we do it multiple times, and before each heartbeat where
we have empty map or reduce slots.

V. FUTURE WORK

A. Smart Scheduling

In its current implementation, Hadoop EKG only obtains
and transmits resource information. In no way does the sched-
uler actually utilize this information. In order to help facilitate
this modification to the scheduler we propose to develop a
means of tagging tasks as bandwidth intensive for a particular
resource. For example, a task with consistently high CPU
utilization could be tagged as a CPU intensive task. This could
be done empirically by calculating a threshold value from tasks
to known with known bottlenecks on different resources.

Depending on the nature of how tasks are profiled and the
information required by the scheduler to effectively designate
tasks to nodes, it may be useful to propagate other information
to the JobTracker such as network bandwidth, separate read
and write statistics, etc. This would be rather trivial informa-
tion to add provided that a means of obtaining this information
from the operating system is available and can be added to the
heartbeat without significantly increasing the heartbeats size.

B. Prevent Bandwidth Overutilization

Each additional byte added to the heartbeat is more traffic
on the network. As the number of nodes scales up, this

could become a potential issue as by default is transmitting 1
heartbeat/node/3 seconds. Currently, the resource utilization
statistics consist of nine longs, 2 floats, and one int. This
corresponds to 84 bytes of information. However, not all of this
information may be necessary for the scheduler and it may be
possible to trim this already small amount of data down even
more. If any more statistics are added to heartbeat, care must
be taken to ensure that the heartbeat does not become so large
that it impedes other network traffic.

C. Advanced Sampling

The currently utilized sampling techniques, particularly for
disk IO and CPU usage are fairly limited and may not be
accurate enough to correctly profile the resource utilization of
a node. There are a number of potential ways to improve this
statistics. For instance, different Linux applications such as the
top command could potentially be used to get a better idea of
CPU utilization. It may also be worthwhile to have resource
sampling run as a separate thread from the TaskTracker in
order to poll the system more often for data.

D. Hadoop headed in this direction

When doing our first designs of Hadoop EKG we worked
with Hadoop 0.20.2, which had no support for sending re-
source data over the heartbeat. However, when first attempted
our implementation we decided to go with the Bleeding
Edge version on Apache’s GitHub account. Here, we found
a number of additions to the TaskTracker to allow resource
usage transmission over the heartbeat and a means of obtaining
this information on a Linux operating system. While the Job-
Tracker in the latest version of Hadoop does not actually utilize
this information, the Hadoop developers have apparently seen
value in obtaining and sending it.



We believe that this is an indicator that Hadoop is already
moving in the direction of utilizing node resource information
to more effectively schedule tasks. Also, a discussion in this
JIRA Ticket brings up scheduling–At some point, a scheduler
should also consider the resources available on the TT (mem,
CPU) and use that to decide what combination of Map and
Reduce slots should run on that node.” [1]

VI. CONCLUSION

After evaluating the different methods to propagate real-time
data from JobTrackers to the TaskTracker, we successfully im-
plemented Hadoop EKG–a system that piggybacks heartbeats
to propagate real-time resource utilization data. We propagate
resource utilization data such as CPU usage, disk I/O and
memory usage, and we find that this data can be very useful for
the scheduler to make smart decisions scheduling tasks based
on the real-time resource utilization information. Through the
course of our work, we learned that Hadoop 0.22-alpha is
already moving in this direction of propagating more resource
data in heartbeats, and managed to build our system with this
design choice in mind. Lastly, we believe the ideal next step is
to use the resource data from the TaskTrackers to implement
smart scheduling based on task resource utilization.

ACKNOWLEDGMENT

The authors would like to thank Nedyalko Borisov and
Professor Shivnath Babu.

APPENDIX

Our source code is available at https://github.com/
ganjianwei/hadoop ekg.

TABLE I
FORMAT OF /proc/diskstats FILE

Field Value
1 Reads Issued
2 Reads Merged
3 Sectors Read
4 ms Reading
5 Writes Completed
6 Writes Merged
7 Sectors Written
8 ms Writing
9 I/Os in Progress

10 ms on I/Os
11 Weighted ms on I/Os

TABLE II
FORMAT OF /proc/stats FILE (UNITS IN JIFFIES)

Field Value
1 Normal Processes
2 Niced Processes
3 System Processes
4 Idle
5 Waiting for I/O
6 Service Interrupts
7 Servicing Softirqs

REFERENCES

[1] Hadoop jira ticket. https://issues.apache.org/jira/browse/HADOOP-3136.
[2] Philip Zeyliger. Cloudera blog: Hadoop metrics. http://www.cloudera.

com/blog/2009/03/hadoop-metrics/, March 2009.


