CrhEEbpD

Beyond Mapper and
Reducer

Partitioner, Combiner,
Hadoop Parameters and more

Rozemary Scarlat
September 13, 2011

Data flow with multiple
reducers

repllcation

..

i Lm_}——v HDFS
replication

--

Figure 2-3. MapReduce data flow with multiple reduce tasks

Partitioner

= the map tasks partition their output, each creating one
partition for each reduce task

* many keys per partition, but all records for a key are
in a single partition
» default partitioner: HashPartitioner - hashes a

record’s key to determine which partition the record
belongs in

= another partitioner: TotalOrderPartitioner - creates a
total order by reading split points from an externally
generated source

= The partitioning can be controlled by a user-defined
partitioning function:

public class OurPartitioner
extends Partitioner <KZ_DataType, VZ_DataType>
implements Configurable {

@0verride
public int getPartition (KZ_DataType key, VZ_DataType value,
int numPartitions) {

}

= Don’t forget to set the partitioner class:
job.setPartitionerClass(OurPartitioner.class);
» Useful information about partitioners:
- Hadoop book -Total Sort (pg. 237); Multiple Outputs (pg. 244);

— http://chasebradford.wordpress.com/2010/12/12 /reusable-total-
order-sorting-in-hadoop/

- http://philippeadjiman.com/blog/2009/12/20/hadoop-tutorial-
series-issue-2-getting-started-with-customized-partitioning/ (Note:

uses the old API!)

Partitioner example

public class myPartitioner <Text, Text> extends
Partitioner <Text, Text> 1implements Configurable {

@0verride
public int getPartition (Text key, Text value,
int numPartitions) {

return partitionIndex = key.hashCode() mod numPartitions;

}
}

public static void main (String[] args) throws Exception{

job.setPartitionerClass(myPartitioner.class);

Combiner

* The combiner receives as input all data emitted by
the mapper instances on a given node

= [ts output is sent to the Reducers (instead of the
mappers’ output).

* Hadoop does not guarantee how many times it will
call the combiner for a particular map output record

=> calling the combiner for 0, 1 or many times should
result in the same output of the reducer

= Generally, the combiner is called as the sort/merge
result is written to disk. The combiner must:

- be side-effect free

- have the same input and output key types and the same
input and output value types

Combiner example

static class myCombiner
extends Reducer<KZ2_DataType, VZ_DataType, KZ2_DataType, VZ_DataType> {

@0verride
public void reduce (K2_DataType key, Iterable<VZ_DataType> values,
Context context) throws IOException, InterruptedException {

. //your logic goes here

public static void main (String[] args) throws Exception{

job.setCombinerClass(myPartitioner.class);

Parameters and more

» Cluster-level parameters (e.g. HDFS block size)
» Job-specific parameters (e.g. number of reducers, map output
buffer size)
- Configurable
- Important for job performance

- Map-side/Reduce-side/Task-environment - Tables 6-1, 6-2,
6-5 from the book

— Full list of mapreduce paramteres with their default values:
http://hadoop.apache.org/common/docs/current/mapred-
default.html

= User-defined parameters

- Used to pass information from driver (main) to mapper/
reducer.

- Help to make your mapper/reducer more generic

= Also, built-in parameters managed by Hadoop that
cannot be changed, but can be read

- For example, the path to the current input that can be used
in joining datasets will be read with:
FileSplit split = (FileSplit)context.getInputSplit();
String inputFile = split.getPath().toString();
= Counters - built-in (Table 8.1 from the book) and user-
defined (e.g. count the number of missing records and
the distribution of temperature quality codes in the
NCDC weather data set)

= MapReduceTypes - you already know some (eg.
setMapOutputKeyClass()), but there are more - Table
7-1 from the book

= [dentity Mapper/Reducer

— no processing of the data (output == input)

= Why do we need map/reduce function without any logic
in them?

— Most often for sorting

— More generally, when you only want to use the basic
functionality provided by Hadoop (e.g. sorting/grouping)

— More on sorting at page 237 from the book

= MapReduce Library Classes - for commonly used

functions (e.g. InverseMapper used to swap keys and
values) (Table 8-2 in the book)

* implementing Tool interface - support of generic
command-line options

— the handling of standard command-line options will be
done using ToolRunner.run(Tool, String[]) and the
application will only handle its custom arguments

- most used generic command-line options:

—-conf <configuration file>
-D <property=value>

= How to determine the number of splits?

— If afile is large enough and splitable, it will be splited
into multiple pieces (split size = block size)
— If a file is non-splitable, only one split.

— If a file is small (smaller than a block), one split for file,
unless...

* CombineFileInputFormat

— Merge multiple small files into one split, which will be
processed by one mapper

— Save mapper slots. Reduce the overhead
= Other options to handle small files?

— hadoop fs -getmerge src dest

