Linear Programming and Zero Sum Games

Ron Parr **CPS 570**

With thanks to Vince Conitzer for some content

What are Linear Programs?

- Linear programs are *constrained optimization problems*
- Constrained optimization problems ask us to maximize or minimize a function subject to mathematical constraints on the variables
 - Convex programs have convex objective functions and convex constraints
 - Linear programs (special case of convex programs) have linear objective functions and linear constraints
- LPs = generic language for wide range problems
- LP solvers = widely available hammers
- · Entire classes and vast expertise invested in making problems look like nails

Linear programs: example

• Make reproductions of 2 paintings

- Painting 1:
 - Sells for \$30
 - · Requires 4 units of blue, 1 green, 1 red
- Painting 2
 - Sells for \$20
 - · Requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

maximize 3x + 2ysubject to $4x + 2y \le 16$ $x + 2y \le 8$ $x + y \le 5$ x ≥ 0 y ≥ 0

Linear Programs in General

- Linear constraints, linear objective function
 - Maximize (minimize): $f(\mathbf{x}) \leftarrow$ Linear function of vector \mathbf{x}
 - Subject to: $Ax \le b$

Matrix A

- Can swap maximize/minimize, ≤/≥; can add equality
- View as search: Searches space of values of x
- Alternatively: Search for tight constraints w/high objective function value

Solving linear programs (2)

- Smarter algorithm (simplex)
 - Pick a vertex
 - Repeatedly hop to neighboring (one different tight constrain) vertices that improvement the objective function
 - Guaranteed to find solution (no local optima)
 - May take exponential time in worst case (though this rare)
- Still smarter algorithm
 - Move inside the interior of the feasible region, in direction that increases objective function
 - Stop when no further improvements possible
 - Tricky to get the details right, but weakly polynomial time

Solving linear programs (1)

- Optimal solutions always exist at vertices of the feasible region
 - Why?
 - Assume you are not at a vertex, you can always push further in direction that improves objective function
- Dumb(est) algorithm:
 - Given n variables, k constraints
 - Check all k choose $n = O(k^n)$ possible vertices

Solving LPs in Practice

- Use commercial products like cplex or gurobi
- Do not try to implement an LP solver yourself
- Do not use matlab's linprog for anything other than small problems.

LP Trick (one of many)

- Suppose you have a huge number of constraints, but a small number of variables (k>>n)
- · Constraint generation:
 - Start with a subset of the constraints
 - Find solution to simplified LP
 - Find most violated constraint, add back to LP
 - Repeat
- Why does this work?
 - If missing constraints are unviolated, then adding them back wouldn't change the solution
 - Sometimes terminates after adding in only a fraction of total constraints
 - No guarantees, but often helpful in practice

Duality

- For every LP there is an equivalent "Dual" probelm
- Solution to primal can be used to reconstruct solution to dual, and vice versa
- LP duality:

minimize: $c^T x$

subject to: $\mathbf{A}x = b$

maximize: $b^T y$

subject to: $\mathbf{A}^T y = c$

 $: y \ge 0$

MDP Solved as an LP

 $V(s) = R(s,a) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V(s')$

Issue: Turn the non-linear max into a collection of linear constraints

 $\forall s,a: V(s) \ge R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$

Optimal action has

What is Game Theory?

- Very general mathematical framework to study situations where multiple agents interact, including:
 - Popular notions of games

 $: x \ge 0$

- Everything up to and including multistep, multiagent, simultaneous move, partial information games
- Can even including negotiating, posturing and uncertainty about the players and game itself
- von Neumann and Morgenstern (1944) was a major launching point for modern game theory
- Nash: Existence of equilibria in general sum games

Covered Today

- 2 player, zero sum simultaneous move games
- Example: Rock, Paper, Scissors
- Linear programming solution

Rock, Paper, Scissors Equations

- R,P,S = probability that we play rock, paper, or scissors respectively (R+P+S = 1)
- U is our expected utility
- Bounding our utility:
 - Opponent rock case: $U \le P S$
 - Opponent paper case: U ≤ S R
 - Opponent scissors case: U ≤ R P
- Want to maximize U subject to constraints
- Solution: (1/3, 1/3, 1/3)

Rock, Paper, Scissors Zero Sum Formulation

- In zero sum games, one player's loss is other's gain
- Payoff matrix:

• Minimax solution maximizes worst case outcome

Rock, Paper, Scissors LP Formulation

- Our variables are: x=[U,R,P,S]^T
- We want:
 - Maximize U
 - $-U \leq P S$
 - $-U \leq S R$
 - $-U \le R P$
 - -R+P+S=1
- How do we make this fit: subject to: $\mathbf{A}x \le b$

maximize: $c^T x$

 $: x \ge 0$

Rock Paper Scissors LP Formulation

$$\begin{aligned} x &= [U, R, P, S]^{\top} \\ A &= \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \end{aligned}$$

maximize:
$$c^T x$$

subject to: $\mathbf{A}x \le b$
: $x \ge 0$

$$b = [0,0,0,1,-1]^T$$

$c = [1,0,0,0]^T$

Rock, Paper, Scissors Solution

- If we feed this LP to an LP solver we get:
 - -R=P=S=1/3
 - U=0
- Solution for the other player is:
 - The same...
 - By symmetry
- This is the minimax solution
- This is also a Nash equilibrium

Tangent: Why is RPS Fun?

- OK, it's not...
- Why might RPS be fun?
 - Try to exploit non-randomness in your friends
 - Try to be random yourself

Minimax Solutions in General

- Minimax solutions for 2-player zero-sum games can always be found by solving a linear program
- The minimax solutions will also be Nash equilibria
- For general sum games:
 - Minimax does not apply
 - Equilibria may not be unique
 - Need to search for equilibria using more computationally intensive methods