Lecture notes 8: Constraint and column generation, and the
cutting stock problem

Vincent Conitzer

1 Introduction

So far, we have assumed that we can explicitly write down the entire linear program. In many
settings, this is not feasible: there may be an exponential number of constraints, or an exponential
number of variables. (We will see an example shortly.) Let us first consider the case where we have
an exponential number of constraints. Here, one natural approach to take is the following. We
start by writing down only some of the constraints of the linear program (perhaps the ones that
we think are the most likely to be binding). Let us call the true linear program L, and the linear
program with the restricted set of constraints L’. We then find an optimal solution z for L’. There
are two possibilities: either x is not feasible for the original problem L, because it violates at least
one of the constraints in L that we had not written down in L’; or z is optimal for L. (z cannot
be feasible but suboptimal for L, because the optimal value for L can be at most the optimal value
for L'.) Now, suppose we have some algorithm (in this context, sometimes called an oracle) for L
which, when given a solution z, either finds a constraint in L that x violates, or otherwise tells us
that there are no violated constraints. We run this oracle on our solution x; if it returns a violated
constraint, then we add this constraint to L’, and we solve it again. Then, we run the oracle on the
new solution to obtain another violated constraint, etc.—until the oracle tells us that there are no
more violated constraints, in which case we know that our current solution is optimal for L. This
approach is called constraint generation. Often, we seek to generate not just any constraint that is
violated, but rather the constraint that is the most violated (which would appear to be more likely
to be binding in the optimal solution to L).

It may seem wasteful to solve L’ from scratch every time. Fortunately, we do not need to do
this. In particular, when we solve L’ we can also easily obtain an optimal solution for the dual of
L'. When we add a constraint to L’, the current dual solution is still feasible: all that has changed
in the dual is that a new variable has been added, which is currently set to 0. So, we can start from
the current dual solution to obtain the next optimal dual solution (from which we can then easily
read off the next optimal primal solution).

Now, what about a problem with exponentially many variables? Such a problem is the dual of a
problem with exponentially many constraints, so if there is a good oracle for constraint generation
in the dual, we can use that. This is called column generation.

Finally, what if the problem has both exponentially many variables and exponentially many
constraints? In this case, we can do both constraint and column generation on L’. Once we get to
the point where we have no violated constraints in either the primal or the dual, we have found an
optimal solution for the original problem L, because our current primal and dual solutions are both
feasible for the full problem L.

2 The cutting stock problem

We now consider the classic example of a problem in which column generation is helpful, the cutting
stock problem. In the cutting stock problem, we operate a factory which produces long rolls of paper
of a fixed width W. However, we can cut the paper as it comes out, for example producing two rolls
of width W/2. (We are only allowed to cut in this vertical direction, not in a horizontal or diagonal
direction.) We have certain orders for paper that we need to fill. Each order ¢ has a width w; and
a length [;. We are allowed to stitch multiple rolls of paper together if they have the same width.
For example, if we have a single order of length ! and width W/2, we can produce one roll of length
/2 (and width W), cut it into two rolls of length /2 and width W/2, and stitch them together to
obtain one roll of length ! and width W/2. We are not allowed to stitch in the other direction: for
example, we cannot combine two rolls of width W/4 into a roll of width W/2 (if we did, then the
paper would look ugly everywhere). Our goal is to fill all of our orders while using the minimum
amount of paper. That is, we want the total paper (of width W) that we produce to be as short as
possible.

Since we can only cut vertically, we may as well cut the paper as it is coming out of the machine.
At any point in time, we are cutting the paper into a certain combination of widths. We call such
a combination a pattern. For example, if W = 11, one pattern is to cut the paper into widths 5,
5, and 1. It may be that we do not have orders of width 1 so that the produced roll of width 1 is
simply waste. In this case, we will simply say that the pattern is {5,5} (and it is implicit that the
remaining 1 is wasted). So, a number will never occur in a pattern unless we have an order of that
width.

To have a concrete example, suppose that W = 11, and we have three orders:

.’w1:5,l1:20;
o wy =4, 1y =10;
011)3:2,13:9.

An optimal solution here is to use the pattern {5,5} for a length of 5, and the pattern {5,4,2}
for a length of 10. This will give us a roll of width 5 of length 2 -5+ 10 = 20, a roll of width 4 of
length 10, and a roll of width 2 of length 10—enough to fill all our orders. (We are producing a
little too much of width 2, but we can simply throw the excess away.) This gives us an objective of
15 (the total length of width W paper that we produce).

More generally, suppose we have enumerated all different patterns, indexed by j. In general, there
are many such patterns; some of them are clearly dominated by other patterns (for example, {5,4} is
dominated by {5,4, 2}, since it does not hurt to produce additional width 2 paper), but even without
considering the dominated patterns there are many patterns. For example, undominated patterns
for the (tiny) above instance include {5,5}, {5,4, 2}, {5,2,2,2},{4,4,2},{4,2,2,2},{2,2,2,2,2}. So,
in general, we do not want to explicitly list all of the patterns. We temporarily ignore this difficulty
and write the linear program as if we can enumerate all the patterns j. Let z; be the amount of
pattern j that we produce, and let a;; be the number of times that the width of order i occurs in
pattern j. For example, in the above instance, if pattern 1 is {5,5}, then a;; = 2. We will assume
that no two orders have the same width (if they do, we can combine them into a single order). We
obtain the following linear program:

minimize >7_, z;
subject to
Vied{l,....,n})z; >0

It should be noted that the w; parameters do not occur in the program. However, they are taken
into account implicitly, because they determine what patterns are possible. The dual is:

maximize Y .- l;y;

subject to

(Vie{l,....n}) 200 a5y <1
(Vie{l,....m})y; >0

We can interpret this dual as follows. Suppose there is an external market at which one unit of
paper of width w; (that is, a roll of width w; and length 1) sells for y;. Also suppose that each unit
of width W that we produce costs us 1. Then, if the constraints in the dual are met, we should
quit our business, because we cannot beat the market prices: no matter what pattern j we use for a
unit of our width W paper, the total market price for the pieces of paper that we produce, which is
>, @ijYi, is at most 1, which is the cost of our paper. Hence, filling all the orders in the market must
be cheaper than filling them all ourselves, and hence), l;y; (the cost of filling all the orders in the
market, and also the dual’s objective) must be a lower bound on the primal objective. Of course, in
reality, there is no external market—this is just a lower bounding argument. Strong duality tells us
that there exist feasible prices y; such that there is a feasible solution z; to the primal that has the
same cost as the (imaginary) market, >, z; = >, Liy;.

Let us return to the example instance from above, for which we already know an optimal primal
solution (5 - {5,5} + 10 - {5,4,2}), and find an optimal solution to the dual, using complementary
slackness. The constraint on order 3 (width 2 paper) is not binding, so we know that the corre-
sponding dual variable y3 must be 0. Furthermore, indexing pattern {5, 5} by 1 and pattern {5, 4, 2}
by 2, we know that)", a;1y; = 2y1 =1 and), a2y = y1 + y2 + y3 = 1. Because y3 = 0, we have
y1 = y2 = 0.5 as an optimal solution to the dual.

Now we return to the issue that in general, there are too many patterns to write down the linear
program explicitly. We will use column generation to address this. We start with some arbitrary
set of patterns; say pattern 1is {5,5} and pattern 2 is {4, 4,2} (note that pattern 2 was something
else before). We solve the example with this restricted set of patterns. It is not hard to see that the
optimal solution to the primal is now xz; = 10, x5 = 9, for an objective of 19 (which is not as good
as the 15 that we can obtain in the unrestricted problem instance). Using complementary slackness,
we can obtain yo = 0 (because we have an excess of width 4 paper), y1 = 0.5,y3 = 1. Bizarrely,
the price for width 5 paper is now lower than that for width 2 paper. This is merely an artifact of
the patterns that we started with: given these patterns, width 5 paper is in a sense easier to obtain
than width 2 paper.

We now want to add a new pattern. To do so, we find the most violated constraint in the dual
(among the set of all constraints in the real problem instance). That is, we want to find a pattern j
that maximizes), a;;y;, a pattern that is most valuable with respect to the current prices. We can
phrase this problem in general as the following integer program:

maximize Y " ya;

subject to

>y wia; <W
(Vie{l,...,m}) a; >0, integer

Here, a; is the number of times that we include width w; in our pattern. Somewhat confusingly,
the a; are the variables of this problem, whereas the y; are parameters (defined by the current
dual solution). The w;, which now appear explicitly, are parameters as well. This is a type of
KNAPSACK problem (it is slightly unusual because we can use the same width multiple times).
While KNAPSACK problems are in general NP-hard, they are among the easiest NP-hard problems

and can in practice be solved quite fast. For our particular situation, it is easy to see that the
optimal solution is to set a; = 0,a2 = 0,a3 = 5—that is, add the pattern {2,2,2,2,2}.

Now, we solve the linear program again with the third pattern added—pattern 1 is {5, 5}, pattern
2is {4,4,2}, and pattern 3 is {2,2,2,2,2}. The optimal solution becomes x; = 10,z = 5,23 = 0.8,
for an objective value of 15.8. This is getting closer to the true optimal value of 15, but we are
not quite there yet. Again, we can obtain the current dual solution using complementary slackness.
Because all of the primal variables are set to nonzero values, all of the dual constraints must be
binding. This results in the following optimal dual prices: y; = 0.5,y2 = 0.4, y3 = 0.2.

Now, again, we solve the KNAPSACK instance to find a pattern that maximizes the total value
in terms of the dual prices. Patterns {5,4,2} and {5, 2,2, 2} both give a total value of 1.1. If we add
pattern {5,4,2}, we have both of the patterns that occur in the optimal solution that we identified
in the beginning, so that the next time that we solve the linear program, we get a solution with value
15. Of course, at this point, we do not yet know that this is an optimal solution to the unrestricted
problem instance. However, when we solve the KNAPSACK instance with the optimal dual prices
y1 = y2 = 0.5,y3 = 0, we find that every pattern has value at most 1; hence, there are no more
violated constraints in the dual, and we have reached optimality.

