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Zero-sum game (Mini-max)g ( )

L R
Them

1 -1 -1 1L
L R

1, 1 1, 1
-1 1 1 -1

L

R
Us

1, 1 1, 1R

• Assume opponent knows our mixed strategy

If l L 50% R 50%• If we play L 50%, R 50%...

• … opponent will be indifferent between R and L…pp

• … we get .5*(-1) + .5*(1) = 0



General-sum games
Y ld till l i i t t i l• You could still play a minimax strategy in general-
sum games
– I.e., pretend that the opponent is only trying to hurt you

• But this is not rational:• But this is not rational: 0, 0 3, 1
1, 0 2, 1

• If Column was trying to hurt Row, Column would play Left, so Row 
should play Down

• In reality, Column will play Right (strictly dominant), so Row 
should play Up

• Is there a better generalization of minimax strategies in zero-sum 
games to general-sum games?



Nash equilibriumNash equilibrium 
[Nash 50]

• A vector of strategies (one for each player) is calledA vector of strategies (one for each player) is called 
a strategy profile

• A strategy profile (σ1 σ2 σ ) is a NashA strategy profile (σ1, σ2 , …, σn) is a Nash 
equilibrium if each σi is a best response to σ-i
– That is, for any i, for any σi’, ui(σi, σ i) ≥ ui(σi’, σ i), y , y i , i( i, -i) i( i , -i)

• Note that this does not say anything about multiple 
agents changing their strategies at the same timeg g g g

• In any (finite) game, at least one Nash equilibrium 
(possibly using mixed strategies) exists [Nash 50](p y g g ) [ ]

• (Note - singular: equilibrium, plural: equilibria)



The presentation game

P t ff t i t D t t ff t i t

Presenter

Pay

Put effort into 
presentation (E) 

Do not put effort into 
presentation (NE)

4 4 16 14Pay 
attention (A) 4, 4 -16, -14

Audience
Do not pay 
attention (NA) 0, -2 0, 0

• Pure-strategy Nash equilibria: (A, E), (NA, NE)
• Mixed-strategy Nash equilibrium:Mixed strategy Nash equilibrium: 

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))
– Utility 0 for audience, -14/10 for presentery , p
– Can see that some equilibria are strictly better for both players than other 

equilibria



Some properties of Nash equilibria
• If you can eliminate a strategy using strict dominance or 

even iterated strict dominance, it will not occur (i.e., it will be , ( ,
played with probability 0) in every Nash equilibrium

Weakly dominated strategies may still be played in some Nash– Weakly dominated strategies may still be played in some Nash 
equilibrium

I 2 l fil i N h ilib i• In 2-player zero-sum games, a profile is a Nash equilibrium 
if and only if both players play minimax strategies
– Hence, in such games, if (σ1, σ2) and (σ1’, σ2’) are Nash equilibria, 

then so are (σ1, σ2’) and (σ1’, σ2)
• No equilibrium selection problem here!



Solving for a Nash equilibrium 
using MIP (2 players)

[Sandholm Gilpin Conitzer AAAI05][Sandholm, Gilpin, Conitzer AAAI05]

• maximize whatever you like (e.g., social welfare)
• subject to• subject to 

– for both i, Σsi
psi

= 1
– for both i, for all si, Σs-i

ps-i
ui(si, s-i) = usi

– for both i, for all si, ui ≥ usi (ui = max usi)i i
– for both i, for all si, psi

≤ bsi
– for both i, for all si, ui - usi ≤ M(1- bsi

)i i si ( si
)

• b is a binary variable indicating whether si isbsi
is a binary variable indicating whether si is 

in the support, M is a large number



Stackelberg (commitment) gamesStackelberg (commitment) games

L R

1, -1 3, 1L

2, 1 4, -1R

• Unique Nash equilibrium is (R,L)

, ,

– This has a payoff of (2,1)



CommitmentCommitment
L RL R

L (1,-1) (3,1)
R (2,1) (4,-1)

• What if the officer has the option to (credibly)What if the officer has the option to (credibly) 
announce where he will be patrolling?

• This would give him the power to “commit” to 
b i t f th b ildibeing at one of the buildings
– This would be a pure-strategy Stackelberg gamep gy g g



CommitmentCommitment…
L RL R

L (1,-1) (3,1)

• If the officer can commit to always being at 
the left building then the vandal's bestthe left building, then the vandal s best 
response is to go to the right building
– This leads to an outcome of (3,1) 



Committing to mixed strategies

L RL R
L (1,-1) (3,1)
R (2,1) (4,-1)

• What if we give the officer even more power:• What if we give the officer even more power: 
the ability to commit to a mixed strategy
– This results in a mixed-strategy Stackelberg game

– E.g., the officer commits to flip a weighted coin 
which decides where he patrolsp



Committing to mixed strategies is 
more powerful

L RL R
L (1,-1) (3,1)
R (2,1) (4,-1)

• Suppose the officer commits to the following• Suppose the officer commits to the following 
strategy: {(.5+ε)L,(.5- ε)R}
– The vandal’s best response is R

– As ε goes to 0, this converges to a payoff of (3.5,0)



Stackelberg games in generalStackelberg games in general

• One of the agents (the leader) has some 
advantage that allows her to commit to aadvantage that allows her to commit to a 
strategy (pure or mixed) 

• The other agent (the follower) then 
chooses his best response to this



VisualizationVisualization

L C RL C R

U 0,1 1,0 0,0 (0,1,0) = M
M 4,0 0,1 0,0
D 0,0 1,0 1,1

( , , )

C

RL R

(1,0,0) = U (0,0,1) = D



Easy polynomial-time algorithm for two players
[Conitzer & Sandholm EC’06, von Stengel & Zamir GEB’10]

• For every column j, we solve separately for the best mixed 
row strategy (defined by zi) that induces player 2 to play j

I rows
J columns
R is the defenders payoff matrix 
C is the attackers payoff matrix
zi is the probability that row i is played

(M b i f ibl f j)

zi is the probability that row i is played 

• (May be infeasible for some j)

• Pick the j that is best for player 1



ExtensionsExtensions

A few extensions with LP or MIP formulations:• A few extensions with LP or MIP formulations:
• Bayesian setting (DOBSS [1]) 

• Uses a MIP to avoid exponential size

• Multiple Defense Resources (ERASER [2])

• Assumes the structure is a “Security game”

• Uses this structure to achieve a compact representation

• Defense Costs [3]

• Explicit costs for defense rather than limited defense resourcesExplicit costs for defense rather than limited defense resources

[1] Paruchuri et al. Playing Games for Security: An Efficient Exact Algorithm for Solving Bayesian 
Stackelberg Gamesg
[2] Kiekintveld et al. Computing Optimal Randomized Resource Allocations for
Massive Security Games 
[3] Letchford and Vorobeychik. Computing Optimal Security Strategies for Interdependent Assets



(a particular kind of) Bayesian games(a particular kind of) Bayesian games

l d tiliti
follower utilities follower utilities

2 4 1 0 1 0

leader utilities
f

(type 1)
f

(type 2)

2 4

1 3

1 0

0 1

1 0

1 3
probability .6 probability .4



Multiple types visualizationMultiple types - visualization
(0 1 0)(0,1,0)

C
Combined

C

R
(0,1,0)

(1,0,0)
L

(0,0,1)

(0,1,0)
(1,0,0) (0,0,1)

L R (R,C)

(1,0,0) C (0,0,1)



DOBSS [Paruchuri et al. AAMAS‘08]

(MIP for the Bayesian setting)

I rows
J columns

lpl the probability that type l appears
Rl is the defenders payoff matrix 
Cl is the attackers payoff matrix
zl

ij is the probability that row i andz ij is the probability that row i and 
column j are played against type l
ql

j =1 when type l’s best response is 
column j
M i l bM is a large number



(In)approximability of Bayesian games
[Letchford et al SAGT’09][Letchford et al. SAGT 09]

• (# types)-approximation: optimize for each type separately 
using the LP method Pick the solution that gives the bestusing the LP method.  Pick the solution that gives the best 
expected utility against the entire type distribution.

• Can’t do any better in polynomial time, unless P=NPy p y ,
– Reduction from INDEPENDENT-SET

• For adversarially chosen types, cannot decide in polynomial 
time whether it is possible to guarantee positive utility, 
unless P=NP
– Again, a MIP formulation can be given



Reduction from independent setReduction from independent set

1 2 3
leader utilities

A B
al

1 1 0
al

2 1 0
al

3 1 0
f ll l f ll l f ll l

A B A B A B

follower utilities
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follower utilities
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follower utilities
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Security games [Kiekintveld et al AAMAS’09]Security games [Kiekintveld et al. AAMAS 09]

Makes a simple assumption namely that payoffs only• Makes a simple assumption, namely that payoffs only 
depend on the identify of the target attacked and if that 
target is defended or not.
• Often combined with an assumption that the defender is always 

better off when the attacked target is defended, and the 
attacker is always better off when the attacked target is 
undefended.

D f d d U d f d dDefended Undefended
T1 (5,-10) (-20,30)
T2 (10,-10) (0,0)



ERASER [Kiekintveld et al. AAMAS’09]

(MIP for multiple resources)

T is the set of targets 
Rt is the defenders payoff given t  
(d – defended and u – undefended)
Ct is the attackers payoff given t  
(d – defended and u – undefended)
ct is the probability that thect is the probability that the 
defender defends target t
m is the number of defense 
resources the defender has

1 f h h i k dat = 1 for the target that is attacked
M is a large number



Defense at a cost [Letchford & Vorobeychik UAI’12]Defense at a cost [Letchford & Vorobeychik UAI 12]

• Each target t is assigned a cost ct

• The defender can choose to pay ct to prevent an attack that p y t p
originates at target t

– Multiple options with different efficiency may be available

– This cost is paid even when t is not attacked

• Paying a fraction of ct will offer partial protection
– This corresponds to playing a mixed strategy

• The existing MIP can be modified to solve this problem
– Furthermore, using techniques similar to what are used in1 we are able to 

give an efficient linear programming formulation for the problem 

1Conitzer and Sandholm 2006



GoalsGoals

• Two conflicting goals for the defender:
– Minimize expected loss from an attack

– Minimize amount spent on defense

– We define an optimal solution as one that minimizes the sum of these two 
lvalues

Si l l f th tt k• Simple goal for the attacker:
– Given a defense strategy for the Defender, attack the target that gives the 

largest expected payofflargest expected payoff

– In the zero-sum case, this corresponds to hurting the Defender as much 
as possibleas possible



Linear program for defense costsLinear program for defense costs

T is the set of targets 
O is the set of defense options
Ro,t is the defenders payoff given o and t
Co,t is the attackers payoff given o and t
po,t is the price (cost) of defense option o for 
target ttarget t
co,t is the probability that the defender defends 
target t with option o



A simple example 
(car supply chain)

Produces ProducesProduces
electronic components

Produces
engine components

Produces enginesProduces radios

ProducesProduces
Micro-car SUV Micro car



ValuationValuation

ProducesProduces
Micro-car SUV Micro car

V l 2 168 V l 1 227Value = 2.168 Value = 1.227



Attack model
(Independent cascade)

Spread chance: .5



Evaluating expected lossEvaluating expected loss
Expected loss = 0 8488Expected loss   0.8488

Expected loss =  0.6135 

Cascade model

Expected loss =  1.227

Values



Evaluating expected lossEvaluating expected loss

• Related to the idea of maximizing influence
– Which unfortunately is NP-hard1

• However, extremely easy to approximate , y y pp
through simulation1

• Fast algorithms for special cases
– Two-pass algorithm for undirected trees (O(|T|))

– Domain specific procedures (i.e. consequence analysis)

1Kempe et al.  2003 



Notation for two-pass p
algorithm for undirected treesg

• T : set of targets

• O : set of defense options• O : set of defense options

• zo,t : probability of an attack succeeding at ,

target t under defense option o

b bilit f d f t t t’• pt,t’ : probability of a cascade from t to t’

• Nt : set of the neighbors of tt g

• wt : worth (value) of target t

• Pt : Parent of t
1Kempe et al.  2003 



Expected loss in treesExpected loss in trees

• Expected loss due to cascading failure:

• p(failure(t’)|t) = product of probabilities of the edges 
on the path between t and t’

• By organizing these paths, we can express the 
expected loss of the contagion spreading across anexpected loss of the contagion spreading across an 
edge (t,t’) as:



Utility evaluationUtility evaluation

Given expected losses over edges, we can 
calculate expected losses for a target t:calculate expected losses for a target t:



Two-pass algorithm for 
undirected trees

• Pick a random node to be the root

• Break each edge into two directed edges

• Upward passUpward pass 
– Calculate expected loss for each edge from parent to child

• Downward pass
– Calculate expected loss for each edge from child to parent



Simple exampleSimple example

P(spread) = .5w = 0

w = 1 w = 1



Upward passUpward pass

P(spread) = .5w = 0

5 * 1 = 5 .5 = .5 * 1.5  1 = .5 .5 .5

w = 1 w = 1



Downward passDownward pass

P(spread) = .5w = 0

.5 * .5 = .25 .25 =.5 * .5

.5 .5

.5  .5  .25 .25 .5  .5

w = 1 w = 1



Expected loss calculationExpected loss calculation

P(spread) = .5w = 0

25 .25

U = 1

.5 .5

.25 .25

U = 1.25 U = 1.25

w = 1 w = 1



CorrectnessCorrectness
• We model this as a message passing algorithm• We model this as a message passing algorithm

– To calculate E[U(t’,t)] requires the messages from Nt \ t’ to t

• Upward 
– Each node has only one parent

– All children have previously passed messages to t

– Thus, each node has Nt \ Pt available when generating the message to its parent

• Downward pass
– All children passed messages to t in the upward pass

– Parent has already passed message in this pass

– Thus, each node has Nt available



Achieving linear timeAchieving linear time

• As given, doesn’t achieve linear time
– A node with O(n) edges (star) requires O(n^2) edge queries

• To get around this, need to store values at the nodes
– We can reason that:

• Store a running total at each node
– By the same reasoning as before the necessary calculations have been performed 

b f th d d i tbefore they are needed as inputs

– However, now need to show that we can recover the needed values from the stored 
value



Recovering the correct valuesRecovering the correct values

• Upward pass
– Already processed all of the children but not the parent

– Value stored is exactly what is neededy

• Downward pass• Downward pass
– Value stored is not correct

– Children have not been updated yet

– Can subtract out the value stored at each child to recover 
the needed values



RuntimeRuntime

• Visit each edge twice
– Once on upward and once on downward pass

• Perform a constant amount of work each time
– Need to query the source of the edge– Need to query the source of the edge

– On downward pass also need to query the target of the edge

– Also need to update the target of the edgep g g

• Since this is a tree, |T| - 1 = |E|Since this is a tree, |T| 1  |E|
– Thus, runtime is O(|T|)



Approximation through 
simulation

1: Take each edge 3: Take the averageg
with probability 
proportional to its 
spread chance

g

2 P t l f2: Propagate values from 
each node to every node 
that can reach it in the 
induced graph

… …
induced graph



Formulating this as a gameg g
(zero sum)( )

If target 0 is attacked
Defended (0,0)

Not 
Defended

(-0.8488,0.8488)



Optimal defense strategyp gy
(zero sum) P(Defense) = 28( ) P(Defense)  .28

P(Defense) = 0

Expected loss

P(Defense) = .5

Uniform cost of .1428



Optimal defense strategyp gy
(zero sum) P(Defense) = 1( ) P(Defense)  1

P(Defense) = 1

Expected loss

P(Defense) = 1

Uniform cost of .0179



Optimal defense strategyp gy
(zero sum) P(Defense) = 0( ) P(Defense)  0

P(Defense) = 0

Expected loss

P(Defense) = .11

Uniform cost of .5714


