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Zero-sum game (Mini-max)

Them
L R
|1,-1] -1, 1
Us
r(-1,1 1, -1

* Assume opponent knows our mixed strategy

 |f we play L 50%, R 50%...

* ... opponent will be indifferent between R and L...
e ...weget.5*(-1)+.5%(1)=0




General-sum games

* You could still play a minimax strategy in general-

SUum games

— l.e., pretend that the opponent is only trying to hurt you

 But this is not rational:

0,0

3, 1

1,0

2, 1

If Column was trying to hurt Row, Column would play Left, so Row

should play Down

In reality, Column will play Right (strictly dominant), so Row

should play Up

[s there a better generalization of minimax strategies in zero-sum

games to general-sum games?




Nash equilibrium
[Nash 50]

A vector of strategies (one for each player) is called
a strategy profile

A strategy profile (o4, 0,, ..., 0,) Is @ Nash
equilibrium if each o, is a best response to 0

— That is, for any i, for any o;, u(c,, 0;) 2 u(o;, 0.)
Note that this does not say anything about multiple
agents changing their strategies at the same time

In any (finite) game, at least one Nash equilibrium
(possibly using mixed strategies) exists [Nash 50]

(Note - singular: equilibrium, plural: equilibria)



The presentation game

Pay

, attention (A)
Audience

Do not pay
attention (NA)

Presenter

Put effort into

Do not put effort into

presentation (E)  presentation (NE)

4,4

-16, -14

0, -2

0,0

* Pure-strategy Nash equilibria: (A, E), (NA, NE)
* Mixed-strategy Nash equilibrium:

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))
— Utility O for audience, -14/10 for presenter

— Can see that some equilibria are strictly better for both players than other

equilibria




Some properties of Nash equilibria

 If you can eliminate a strategy using strict dominance or
even iterated strict dominance, it will not occur (i.e., it will be
played with probability 0) in every Nash equilibrium
— Weakly dominated strategies may still be played in some Nash
equilibrium
* In 2-player zero-sum games, a profile is a Nash equilibrium
if and only if both players play minimax strategies
— Hence, in such games, if (0,4, 0,) and (o,’, 0,’) are Nash equilibria,
then so are (0,,0,’) and (o4, 0,)

* No equilibrium selection problem here!



Solving for a Nash equilibrium
using MIP (2 players)

[Sandholm, Gilpin, Conitzer AAAIO5]
* maximize whatever you like (e.q., social welfare)

* subject to

—for both i, 25 pg = 1

— for both i, for a
— for both I, for a
— for both I, for a
— for both I, for a

Si’ ZS_i ps_i ui(Si’ S-i) = usi
Sj, Uj = Ug. (U; = max ug,)
Si’ psi S bsi

S;, Uj - Ug. = M(1- by )

* b, Is a binary variable indicating whether s; is
N the support, M is a large number



Stackelberg (commitment) games

Lo

e\ i

L R

oL 1!_1 351

R 2,1 4, -1

» Unique Nash equilibrium is (R,L)
— This has a payoff of (2,1)




Commitment

L R w
L (1,-1) (3,1)

R (2,1) (4,-1)

 What if the officer has the option to (credibly)
announce where he will be patrolling?

* This would give him the power to “"commit” to
being at one of the buildings

— This would be a pure-strategy Stackelberg game



Commitment...

L R
L (1,-1) (3,1)

* |f the officer can commit to always being at
the left building, then the vandal's best
response is to go to the right building

— This leads to an outcome of (3,1)



Committing to mixed strategies

. O

L (1,-1) (3,1) rw
R (2,1) (4,-1)

 What if we give the officer even more power:
the ability to commit to a mixed strategy
— This results in a mixed-strategy Stackelberg game

— E.g., the officer commits to flip a weighted coin
which decides where he patrols



Committing to mixed strategies is
more powerful

e, O

L (1,-1) (3,1)
R (2,1) (4,-1) w

« Suppose the officer commits to the following
strategy: {(.5+¢)L,(.5- €)R}
— The vandal’s best response is R

— As € goes to 0, this converges to a payoff of (3.5,0)



Stackelberg games in general

* One of the agents (the leader) has some
advantage that allows her to commit to a
strategy (pure or mixed)

* The other agent (the follower) then
chooses his best response to this



Visualization

L C R
U 0,1 1,0 | 00 0.1.0)=M
M 40 | 0,1
D 0,0 1,0

(1,0,0)=U (0,0,1)=D



Easy polynomial-time algorithm for two players

[Conitzer & Sandholm EC’06, von Stengel & Zamir GEB’10]

* For every column j, we solve separately for the best mixed
row strategy (defined by z)) that induces player 2 to play |

\V/j max ZZszg
i
N Zzicij > Zzioij’
i i

» (May be infeasible for some |)

* Pick the j that is best for player 1

I rows

J columns

R is the defenders payoff matrix

C 1s the attackers payoff matrix

z,1s the probability that row i 1s played



Extensions

A few extensions with LP or MIP formulations:
« Bayesian setting (DOBSS [1])

 Uses a MIP to avoid exponential size

* Multiple Defense Resources (ERASER [2])

« Assumes the structure is a “Security game”

» Uses this structure to achieve a compact representation

« Defense Costs [3]

« Explicit costs for defense rather than limited defense resources

[1] Paruchuri et al. Playing Games for Security: An Efficient Exact Algorithm for Solving Bayesian
Stackelberg Games

[2] Kiekintveld et al. Computing Optimal Randomized Resource Allocations for

Massive Security Games

[3] Letchford and Vorobeychik. Computing Optimal Security Strategies for Interdependent Assets



(a particular kind ofy Bayesian games

. follower utilities  follower utilities
leader utilities

(type 1) (type 2)
1 0 1 0
0 1 1 3

probability .6

probability .4




Multiple types - visualization

(0,1,0)

Combined

(1,0,0)

(1,0,0)




DOBSS [Paruchuri et al. AAMAS'08]
(MIP for the Bayesian setting)

I rows

max T T Yp R,‘,,J i J columns

p' the probability that type / appears

R!is the defenders payoff matrix

Vi Z Z Zij = (' is the attackers payoff matrix
] z!,;is the probability that row i and
R o< column j are played against type [
hi 45 = Z i q',=1 when type /’s best response is
column j
Vi Z q;' =1 M 1s a large number

Vi 0< (@t =) Cf Zz N<A-¢)M
@ V“JZ E[O 1]

\7 ¥ Z Zij = 1;_7 vl,j Qj < {07 1}



(In)approximability of Bayesian games
[Letchford et al. SAGT 09]

* (# types)-approximation: optimize for each type separately
using the LP method. Pick the solution that gives the best
expected utility against the entire type distribution.

« Can’t do any better in polynomial time, unless P=NP
— Reduction from INDEPENDENT-SET

* For adversarially chosen types, cannot decide in polynomial
time whether it is possible to guarantee positive utility,
unless P=NP

— Again, a MIP formulation can be given



Reduction from independent set

1 2 3
leader utilities Cr Cr O
A B
a'l 1 0
a’| 1 0
as| 1 0
follower utilities  follower utilities  follower utilities
(type 1) (type 2) (type 3)
A B A B A B
a'l 3 1 a'l 0 10 a'l 0 1
a’| 0 10 a’| 3 1 a’| 0 10
as| 0 1 as| 0 10 as| 3 1




Security games [Kiekintveld et al. AAMAS’09]

* Makes a simple assumption, namely that payoffs only
depend on the identify of the target attacked and if that
target is defended or not.

« Often combined with an assumption that the defender is always
better off when the attacked target is defended, and the

attacker is always better off when the attacked target is
undefended.

Defended Undefended
T (5,-10) (-20,30)
T, (10,-10) (0,0)




ERASER [Kiekintveld et al. AAMAS’09]
(MIP for multiple resources)

Ve  d—) (Rfcs+Ry(1—cy)) < (1—a)M
t

Ve 0 < k=) (Cier+Cr(1—cr)) < (1—a)M
t

at € {0, 1}
Ct € [0, ].]

T is the set of targets

R, 1s the defenders payoft given ¢
(d — defended and u — undefended)
C, 1s the attackers payoff given ¢
(d — defended and u — undefended)
c,1s the probability that the
defender defends target ¢

m 1s the number of defense
resources the defender has

a,= 1 for the target that 1s attacked
M is a large number



Defense at a cost [Letchford & Vorobeychik UAI'2]

« Each target t is assigned a cost ¢,

» The defender can choose to pay c, to prevent an attack that
originates at target ¢

— Multiple options with different efficiency may be available

— This cost is paid even when t is not attacked

» Paying a fraction of ¢, will offer partial protection

— This corresponds to playing a mixed strategy

* The existing MIP can be modified to solve this problem

— Furthermore, using techniques similar to what are used in' we are able to
give an efficient linear programming formulation for the problem

IConitzer and Sandholm 2006



Goals

« Two conflicting goals for the defender:
— Minimize expected loss from an attack
— Minimize amount spent on defense

— We define an optimal solution as one that minimizes the sum of these two
values

« Simple goal for the attacker:

— Given a defense strategy for the Defender, attack the target that gives the
largest expected payoff

— In the zero-sum case, this corresponds to hurting the Defender as much
as possible



Linear program for defense costs

) ST t
V; mazimized" — ) ) Do, tCo ¢

S.t.
t [ 1] T is the set of targets
\v/()’t Coat AE O’ O i1s the set of defense options
\v’ . Ct — 1 R, is the defenders payoft given o and ¢
0 ~0,t C, . 1s the attackers payoff given o and ¢
df . Z ( R '*Cf ) . D, 18 the price (cost) of defense option o for
0 O,t 0, £ - target ¢

C,. 18 the probability that the defender defends

t ) t . target ¢ with option o
k' =2 0(CotCy 5) =



A simple example
(car supply chain)

Produces Produces

electronic componenfs> ° — engine components

Produces radio

Produces engines

Produces
Micro-car




Valuation

Produces
Micro-car

Value = 2.168 Value = 1.227



Attack model
(Independent cascade)

Spread chance: .5 \’ o
Y
©



Evaluating expected loss




Evaluating expected loss

» Related to the idea of maximizing influence
— Which unfortunately is NP-hard’

 However, extremely easy to approximate
through simulation’

» Fast algorithms for special cases

— Two-pass algorithm for undirected trees (O(|T]|))

— Domain specific procedures (i.e. consequence analysis)

'Kempe et al. 2003



Notation for two-pass
algorithm for undirected trees
T : set of targets
O : set of defense options

Z,1- probability of an attack succeeding at
target t under defense option o

p;¢ - probability of a cascade fromt to t
N, : set of the neighbors of t

w, : worth (value) of target t

P, : Parent of t



Expected loss In trees

» Expected loss due to cascading failure:

<0t Zt’;ét wy p( failure(t’)|t)

» p(failure(t’)|t) = product of probabilities of the edges
on the path between t and t’

* By organizing these paths, we can express the

expected loss of the contagion spreading across an
edge (t,t') as:

E[U(t,t’)] — Pt/ (wt’ T+ Zt”ENt/,t”;ét E[U(t’,t”)])



Utility evaluation

Given expected losses over edges, we can
calculate expected losses for a target t:

Ut — wt —I_ Zt’ENt E[U(t,t’)]



Two-pass algorithm for
undirected trees

Pick a random node to be the root
Break each edge into two directed edges

Upward pass

— Calculate expected loss for each edge from parent to child

Downward pass

— Calculate expected loss for each edge from child to parent



Simple example

w =0 P(spread) = .5




Upward pass

w =0 P(spread) = .5




Downward pass




Expected loss calculation



Correctness

* \We model this as a message passing algorithm

— To calculate E[U; )] requires the messages from N\ t' to t

« Upward

— Each node has only one parent
— All children have previously passed messages to t

— Thus, each node has N, \ P, available when generating the message to its parent

 Downward pass

— All children passed messages to t in the upward pass
— Parent has already passed message in this pass

— Thus, each node has N, available



Achieving linear time

* As given, doesn’t achieve linear time

— A node with O(n) edges (star) requires O(n”*2) edge queries

« To get around this, need to store values at the nodes

— We can reason that:

Ut = Wy + ZtENt pt,t’ (Ut’ T E[U(t’,t)])

« Store a running total at each node

By the same reasoning as before the necessary calculations have been performed
before they are needed as inputs

However, now need to show that we can recover the needed values from the stored
value



Recovering the correct values

 Upward pass
— Already processed all of the children but not the parent

— Value stored is exactly what is needed

 Downward pass
— Value stored is not correct
— Children have not been updated yet

— Can subtract out the value stored at each child to recover
the needed values



Runtime

 Visit each edge twice

— Once on upward and once on downward pass

 Perform a constant amount of work each time

— Need to query the source of the edge
— On downward pass also need to query the target of the edge

— Also need to update the target of the edge

* Since this is a tree, |T| -1 = |E]
— Thus, runtime is O(|T|)



Approximation through
simulation

1: Take each edge 3: Take the average

with probability <o
proportional to its
spread chance ) ( >@). ) @

2: Propagate values from D )
each node to every node

that can reach it in the o otozo
induced graph O

olo o
@ \®%
® @



Formulating this as a game

(zero sum)

o \ Defended

Not
Defended

If target 0 is attacked

(0,0)

(-0.8488

,0.8488)




Optimal defense strategy
(D) (D (zero Sum)

ot o
P(Defense) = 0

-
Expected loss o o o
P(Defense) = .5

P(Defense) = .28

Jniform cost of .1428



Optimal defense strategy

D @ (zero sum)
483

Expected loss
(1 (o3
&y

DICD

Jniform cost of .0179

P(Defense) = 1

P(Defense) = 1

P(Defense) = 1




Optimal defense strategy

.toiz

Expected loss

Jniform cost of .5714

(zero sum)

ot

P(Defense) =0

P(Defense) 0

P(Defense) 1



