Lecture notes 11: Adding valid inequalities (cutting planes)

Vincent Conitzer

1 Introduction

In the branch-and-bound algorithm, every time we branch, the program splits into two programs
with additional inequalities. We will now consider techniques that do not result in multiple programs,
but still add valid additional constraints to the program that help us find the solution.

Let us consider again the integer program:

maximize 3z, + 2o

subject to

4.%1 + 2(E2 S 15

T, + 229 <8

T1+ 22 <5

z1 > 0, integer; o > 0, integer

Figure 1 illustrates this integer program.

Ax, + 2%, =15

optimal IP
solution:
4 X(lj_bjg’:xi;?’ optimal LP
solution:
X1=2.5, X,=2.5
obj=125

X, +2X, =8

0 5 4 6 8 x,

Figure 1: Graphical representation of the modified painting problem instance with integrality con-
straints.

It is not hard to find additional valid constraints. For example, we can simply add the first two
constraints to obtain 5x1 +4xo < 23. This is a valid constraint. However, it is not a very helpful one,
because adding it does not change the feasible region for the LP relaxation. What we really want
to do here is to add linear constraints that cut off part of the feasible region of the LP relaxation,
but that do not cut off any integer solutions. If we add enough such constraints, then the feasible
region for the LP relaxation will be cut down to the convex hull of all the integer feasible points.
If we manage to add this many constraints, then solving the LP relaxation will give us an integer
optimal solution. In fact, we usually do not need to add this many constraints: we only need to add
enough constraints around the optimal points.

If we want to generate a valid linear inequality that is going to cut down the feasible region of the
LP relaxation, we must somehow use the integrality constraints to come up with these inequalities.
Below, we will see examples of various arguments for getting valid inequalities based on the integrality
constraints, illustrated with the above integer program. These inequalities can generally be generated
in very systematic ways, but the main purpose of the below is to illustrate the types of argument
rather than systematic ways of generating them.

2 A simple rounding argument

Let us consider the constraint 4x1 + 2xo < 15. Dividing by 2, we get 2z + 22 < 7.5. However, if
x1 and x4 are set to integer values, then 2z, + x5 must be an integer as well. Hence, it follows that
we must have 2z1 + 2o < 7. If we simply add this constraint, then the solution 21 = 2,29 = 3 (with
objective value 12) becomes optimal for the LP relaxation). (To see why, adding 2z 4+ 22 < 7 to

the constraint 1 + 29 < 5 gives us 321 + 2z2 < 12—but 321 + 2z is the objective.)

Making this argument a little more general, let us consider the case where we have a constraint
a121 + ... + apx, < b, where all the a; are integers (and all the z; are required to take integer
values). Let g be the greatest common divisor of all the a;. Then, the following constraint must
hold: (ai/g)x1 + ... + (an/g)xn < |b/g| (because all the a;/g are integers). We note that this
constraint is parallel to the original constraint, but it is stronger. It turns out that we cannot make

it any stronger without cutting some integer points: there is always an integer point (z1,...,2,)
such that (a1/g)z1+. ..+ (an/g)zn = |b/g|. (This follows from the fact that the a;/g are relatively
prime.)

In the above example, we could apply this argument directly to one of the existing constraints. In
other examples, we first need to take a linear combination of existing constraints for this argument
to be effective. For example, consider the following integer program:

maximize x1 + o

subject to

xr1 + 5$2 < 20

51’1 + X2 é 20

z1 > 0, integer; o > 0, integer

The optimal solution to the LP relaxation is 21 = 10/3, 22 = 10/3, for an objective value of 20/3.
However, the optimal integer feasible solution is 1 = 3,x2 = 3, for an objective value of 6. The
rounding technique will not produce anything interesting when applied to either of the two con-
straints individually, because the greatest common divisor of 1 and 5 is 1, and 20 is already an
integer. However, if we add the two constraints, we obtain 6x1 + 6x2 < 40. Applying the rounding
technique to this constraint, we get x1 + xo < [40/6] = 6. Because x1 + x2 is also the objective,
when we add this constraint, the optimal integer feasible solution z; = 3,z = 3 (with objective
value 6) becomes optimal for the LP relaxation.

3 Disjunctive constraints

Let us return to the original integer program:

maximize 3z + 25

subject to

4:61 + 21’2 S 15

xr1 + 2.’E2 S 8

x1+x9<H

x1 > 0, integer; x2 > 0, integer

When we discussed branch and bound, we took advantage of the fact that 1 < 2 or 1 > 3. We
will now see how we can get a valid inequality out of this fact as well.
Multiplying the third constraint by 2 we obtain

2z 4+ 229 < 10

which can be rewritten as
3x1+ 200+ (2—11) <12

Also, the first constraint can be rewritten as

3x1 4+ 220+ (11 —3) < 12

Now, because either 21 < 2 or x; > 3, it follows that
3x1 + 229 < 12
This is because if z; < 2, then
3x1 + 2209 < 3wy + 220+ (2 —27) < 12
On the other hand, if z; > 3, then
3x1 + 229 < 3wy + 2x0 + (11 — 3) < 12

Again, adding the constraint 3x; + 2zo < 12 is enough to make the optimal integer feasible
solution optimal for the LP relaxation as well.

More generally, if for some integer k, some j’, some o > 0, and some § > 0, we have the
constraints

(Z ajz;) +alzy — (k+1)) <b

and

O ajmy) + Bk —z5) <b
J
and additionally we know that z;; < k or x;; > k + 1, then it follows that

(Z a;z;) <b

In fact, any valid inequality that is based on the fact that x;; < k or £;; > k4 1 can be obtained
this way.

4 Modular arithmetic and Gomory cuts

Our final inequalities will be based on an equality constraint rather than an inequality constraint
(this is not so restrictive because we can write linear programs in equality form). Suppose we have

the equality constraint
Z ajmj =b
J

Also, let us assume that all the z; must be nonnegative integers. Given some d, let r; be the
remainder that results from dividing a; by d, and similarly let s be the remainder that results from
dividing b by d. Because the x; are integers, it follows that

erxj =s modd

J

Then, because s < d and Zj rjz; > 0 (because the z; are nonnegative), this implies that Zj rixT; >
s.

An interesting special case of this occurs when we set d = 1. In this case, the resulting inequality
>.;Tj%; = s can be written as »_(a; — |a;])z; > b— [b]. This is known as a Gomory cut.

To see an example of how to apply a Gomory cut, let us consider the painting example again.
Suppose we solve the LP relaxation of this example using the simplex algorithm, thereby obtaining

the optimal dictionary:

maximize 12.5 — 0.5w; — w3
subject to

xr1 = 2.5 — 0511/1 + w3

wo = 0.5 — 05’[1)1 + 3’[1.)3

X9 = 2.5+ 0.5w1 - 2w3
T1,T2,W1,W2,Ws Z 0

Of course, x1 and x5 are both set to 2.5 in the optimal solution. Let us consider the first inequality
constraint, which can be written as follows:

xr1 + 05w —wg = 2.5

We obtain the following Gomory cut from this (note that we can require the slack variables to be

integer):
0.5w; > 0.5

or equivalently
w1 2 1

We can add this constraint to the program; if we then solve the LP relaxation with this added
constraint, we obtain the optimal integer feasible solution.

It should be noted that it is always possible to apply a Gomory cut effectively in this way. This is
because of the following reasons. If, in the optimal dictionary, a basic variable is set to a noninteger
value, then let us get a Gomory cut from this constraint. That basic variable will not occur in
the Gomory cut (since its coefficient is 1). Therefore, the Gomory cut will involve only nonbasic
variables; moreover, the right-hand side will be positive (because we assumed that the basic variable
was set to a noninteger value). Hence, the Gomory cut cuts off the current solution (because all the
nonbasic variables are set to zero in the current solution, violating the Gomory cut), and we will
make progress.

