Compsci 101: Test 1 Practice 2

September 30, 2013

Name:

NetID/Login:

Community Standard Acknowledgment (signature)

H \ value \ grade H
Problem 1 | 12 pts.

Problem 2 | 12 pts.

Problem 3 | 12 pts.

Problem 4 | 12 pts.

In writing code you do not need to worry about specifying the proper import statements. You do not need
to worry about getting function or method names exactly right. Assume that all libraries and packages we
have discussed are imported in any code you write.

PROBLEM 1: (It’s a mystery (12 points))

Consider the following mystery function with one parameter animals which is a list of strings.

def mystery(animals): # line 1
’?’ animals is a list of strings ’’°

x=11] # line 2

for w in animals: # line 3

x.append (len(w)) # line 4

amount = max(x) # line 5

y = [w for w in animals if len(w) == amount] # line 6

return y[0] # line 7

A. (4 pts) Consider making the call mystery(animals) with the value of animals below. Answer the

following questions about tracing what happens with this call
animals = [’cat’, ’mouse’, ’snake’, ’chicken’, ’fish’]
A1. What is the value of x after line 5 executes?

A2. What is the value of amount after line 5 executes?

A3. What is the value of y after line 6 executes?

A4. What value is returned from the call mystery(animals)?

B. (8 pts) Consider making the call mystery(zoo) with the value of zoo below.

questions about tracing what happens with this call
zoo = [’lion’, ’rhino’,’bear’,’zebra’]
B1. What value is returned from the call mystery(zoo)?

B2. Explain in words what mystery does.

B3. Rewrite lines 2-5 as one line that includes a list comprehension

Answer the following

B4. In the original code, if line 7 was changed to return y[-1], explain in words what mystery would now

do.

PROBLEM 2 : (Dinner Functions)

Ellen and Oscar want an easy way to decide who will cook dinner each night. They decided that Oscar will
cook if it is an odd day and Ellen will cook if it is an even day. But then Oscar realized that many times
he will cook two days in a row, on the 31st and the 1st, but that Ellen would never cook two days in a row.
They then agreed in addition that if the day was the 31st day of the month then if the month was even,
Ellen would cook and if the month was odd, Oscar would cook that day.

Write the function whoseNightToCook that has two int parameters day and month and returns the string
‘Ellen’ or ’Oscar’, the name of the person who should cook dinner that night following the rules above.
Assume the arguments are correct. That is, you do not need to know or verify how many days in a month.

call returns | comment
whoseNightToCook(13, 4) | Oscar’ | day is odd
whoseNightToCook(16, 3) | ’Ellen’ day is even
whoseNight ToCook(31, 8) | ’Ellen’ day is 31, month is even
whoseNightToCook(31, 3) | Oscar’ | day is 31, month is odd

def whoseNightToCook(day, month):
200
returns "Ellen" if an even day, "Oscar" if an odd day
except when day is 31, returns "Ellen" if month is even,

and "Oscar" if month is odd
22

PROBLEM 3 : (The Vicissitudes of Life (16 points))

In some competitions such as gymnastics and figure skating several judges score a competitor’s effort. The
score assigned is based on the average of all the judge’s scores after removing the high and low score from
those from which the average is calculated.

Two functions are shown below for calculating scores. They both calculate and return the average judge-score
after removing the high and low score.

For example, if the list [6.0, 5.5, 4.5, 5.0, 5.5] is the value of the variable scores then the expression
computeScore (scores) should evaluate to 5.1667 The average of 5.0, 5.5, and 5.0 is 5.1667—mnote that one
high score of 5.5 and the low score of 4.5 do not contribute to the average.

You're given two implementations of computeScore and asked to comment about features they have. Given
identical lists, each implemenation returns the same results, i.e., the only differences in the functions are in
the style/code, not in whether the functions are correct. The implementations are on the next page.

Part A (4 points)

Explain, briefly, why both functions generate an error message ZeroDivisionError when passed a list of
two elements.

Part B (4 points)
Briefly, why is the list sorted in Implementation I?

(continued after code)

Implementation I

def computeScore(scores):
scores.sort ()
return sum(scores[1:len(scores)-1])/(len(scores)-2)

Implementation IT

def computeScore(scores):
tot = sum(scores)
low = min(scores)
high = max(scores)
return (tot - low - high)/(len(scores)-2)

Part C (8 points)

You are to write a new implementation of computeScore in which all scores equal to the high score and
all scores equal to the low score are thrown out, i.e., they do not contribute to the average which is then
multiplied by the difficulty factor. For example, for the scores [5, 3.5, 4, 3, 4, 5, 5, 2, 3.5, 5, 2]
the average would be (3.5 +4 4+ 3 +4 + 3.5) = 18/5 = 3.6 since each score of 5 (the high score) and each
score of 2 (the low score) do not contribute to the final average.

Complete the function below.

def computeScore(scores):

PROBLEM 4 : (X-country Scoring (15 points))

In cross country running a team’s score is based on where its runners place, i.e., first, second, third, ...last.
It’s the place that’s used, not the runner’s time (but the a runner’s time can be used to break ties, we won’t
worry about that in this problem). A team’s score is calculated by adding the places of its first five finishers,
lowest score wins (see examples below).

For example, consider running data stored in the format shown below in a file "xcountry.dat", where each
line stores the time a runner crossed the finish line, and the school of the runner, separated by a comma.
The first line of the file is for the first-place finisher, the second line of the file for the second-place finisher,
and so on so that in general the n!” line of the file is for the n* finisher. In the example below a UNC
runner finishes first, but Duke runners finish second, third, fifth, and ninth.

16:58,UNC

17:52,Duke

17:57 ,Duke

18:03,Wake Forest
18:07,Duke

18:10,Wake Forest
18:12,UNC
18:25,William and Mary
18:27,Duke
18:37,William and Mary
18:39,Wake Forest
18:45,Wake Forest
18:59,UNC

19:01,UNC

19:01,Duke
19:02,William and Mary
19:05,William and Mary
19:15,Duke

Complete the function getScore whose input parameters specify a file of xcountry-running data and a school
and that returns the total score for the team. See the sample output below.

For example, if the function getScore is completed as required the output of this Python code run on the
data file above is shown.

Run this code:

teams = ["UNC", "Duke", "Wake Forest", "William and Mary", "Georgia Tech"]
for t in teams:

s = getScore("xcountry.txt",t)

print t,s

Output follows:

UNC 35

Duke 52

Wake Forest 33
William and Mary 51
Georgia Tech NO SCORE

Note that Duke runners place 2,3,5,9, 15 and 2+ 3+ 549 + 15 = 34. A Duke runner places 18" and in the
code you write you’ll add the places of all runners, not just the first five runners for a team.

Complete getScore on the next page, but score all runners, not just the first five. When your program runs
it should report 52 for Duke because 34 + 18 = 52.

Part A (10 points)

def getScore(filename,uname):
file = open(filename)
score = 0

file.close()
return score

Part B (5 points)

You should write an explanation of how you’d limit the code you write to score just the top five runners on
a team. You don’t need to write code, you can write words to indicate how you’d limit the scoring to five
runners. You can write code, or you can write an explanation in English.

