Compsci 101: Test 1 Practice

September 25, 2013

Name:

NetID/Login:

Community Standard Acknowledgment (signature)

H \ value \ grade H
Problem 1 | 12 pts.

Problem 2 | 12 pts.

Problem 3 | 12 pts.

In writing code you do not need to worry about specifying the proper import statements. You do not need
to worry about getting function or method names exactly right. Assume that all libraries and packages we
have discussed are imported in any code you write.

PROBLEM 1 : (Big Ugly Gigantic Spiders)

The Reverse Name problem is attached at the end of this test. The function change is intended to reverse
the last and first names when in the format last, first, so that the call below returns "bob jones".

change (" jones, bob")
Here is one student’s solution that is all green. You will be asked two questions about this code.

def change(name):
index = name.find(",")
return name[index+2:]+" "+name[:index]

Part A (4 points)

Explain in words why the first slice used in the return uses index+2 and why the second slice uses index.

Part B (4 points)

Pat looks at the code and says it will generate an error message if it’s called with a string without commas
(not allowed in the APT) so that change("bob jones") will generate an error. Ryan says no, it won’t
generate an error, runs the code, and the call change("bob jones") returns the string below (no error is
generated).

ob jones bob jone

Explain why the function generates this return value and does not result in an error.

PROBLEM 2 : (Play that Funky Music)

Part A

A number is abundant if it is greater than the sum of its proper divisors, that is its divisors other than itself.

For example 12 is abundant because 1 +2+ 4+ 6 = 13 > 12. The first 10 abundant numbers are 12, 18, 20,
24, 30, 36, 40, 42, 48, 54.

Write a boolean function is_abundant to return True if its parameter is abundant and False otherwise.

call return value
is_abundant (4) False
is_abundant (12) | True
is_abundant (24) | True
is_abundant (28) | False

def is_abundant (num):
mnn
return True if int parameter num is abundant and
returns False otherwise

Part B

Write a function abundant_count that returns the number of abundant numbers between (and including)
parameters first and last. You should call is_abundant and assume it works correctly.

call return value
abundant_count(1,11) 0

abundant_count (1,20) 3
abundant_count (20,30) | 3
abundant_count (70,80) | 4

def abundant_count (start, end):
nnn
return how many numbers between start and end (inclusive)

are abundant
mnn

PROBLEM 3 : (Genus, Order, Class, ...)

Data is stored in a file in the format shown below. Each line contains data for one animal giving the animal’s
name (string), gestation period in days (int), and estimated longevity in years (int). The information on a
line is delimited by commas as shown, for example the file below shows information for eight animals in the
format used in this problem.

bear,180,15
cat,52,10

dog,53,10

hamster, 15,2
elephant,510,30
hippopotamus, 220,30
human, 253,65
lion,106,10

Write the function getAgeList that returns a list of those animals whose estimated longevity is between the
values given by its two int parameters: low and high. The name of the file holding the data to be read and
processed is given by parameter filename.

For example, if "data.txt" is the name of the sample data file above, then the call
getAgeList("data.txt",15,30) should return the list ["bear","elephant","hippopotamus"],
the call getAgelList("data.txt",1,8) should return the list ["hamster"] and the call
getAgeList("data.txt",70,100) should return the empty list []

def getAgeList(filename, low, high):
file = open(filename);

file.close()

10/3/12

APT: Reverse Names

APT: foo

Problem Statement

Specification

Names are often stored in the format 'last,
first' so they can be easily ordered by last
name. However, often it is more
convnenient to view them in the format
'first last' since that is how people are used
to reading them. Write a function that
converts a given string from the first
format to the second.

filename: Reverse.py

def change (name):

return a String in the format

'first last' when

given a String parameter in the format 'last,

you write code here

First'

Constraints

e the given string will always contain one and only one comma to separate first and last names

e both last and first names will contain at least one character

Examples

1. word = "Astrachan, Owen"

returns "Owen Astrachan

2. word = "1, f"

returns £ 1

3. word = "Doe Jr., Bubba-John"

returns Bubba-John Doe Jr.

www.cs.duke.edu/csed/pythonapt/reversename.html

1/1

	test1fall13practice
	test1fall12

