
Compsci 101, Fall 2012 20.1 

LWoC 
  Review Recommender, dictionaries, files 

Ø  How to create recommendations in order? food.txt 
Ø  Toward a Duke eatery-recommender system, tools? 

  Test2, reworked, grades, more 
Ø  The good news, the regular news, the fiscal cliff, … 

  Limits of Computation 
Ø  Can you do anything with enough knowledge and time? 
Ø  Why? 

Compsci 101, Fall 2012 20.2 

What is Computing? Informatics? 
  What is computer science, what is its potential? 

Ø  What can we do with computers in our lives? 
Ø  What can we do with computing for society? 
Ø  Will networks transform thinking/knowing/doing? 
Ø  Society affecting and affected by computing? 
Ø  Changes in science: biology, physics, chemistry, … 
Ø  Changes in humanity: access, revolution (?), … 

  Privileges and opportunities available if you know code 
Ø  Writing and reading code, understanding algorithms 
Ø  Majestic, magical, mathematical, mysterious, … 

Compsci 101, Fall 2012 20.3 

What can be programmed? 
  What class of problems can be solved? 

Ø  Hadoop, Cloud, Mac, Windows8, Android,… 
Ø  Alan Turing contributions 

•  Halting problem, Church-Turing thesis 

  What class of problems can be solved efficiently? 
Ø  Problems with no practical solution 

•  What does practical mean? 

Ø  We can't find a practical solution 
•  Solving one solves them all 
•  Would you rather be rich or famous? 

Compsci 101, Fall 2012 20.4 

Schedule students, minimize conflicts 

  Given student requests, 
available teachers 
Ø  write a program that 

schedules classes 
Ø  Minimize conflicts 

  Add a GUI too 
Ø  Web interface 
Ø  … 
Ø  … 

I can’t write  
this program 
because I’m too 
dumb 

 



Compsci 101, Fall 2012 20.5 

One better scenario 
I can’t write this 
program because 
it’s provably 
impossible 

 

I can’t write this 
program but neither 
can all these famous 
people 

 

Still another scenario, is this better? 

Compsci 101, Fall 2012 20.6 

Summary of Problem Categories 
  Some problems can be solved 'efficiently' 

Ø  Run large versions fast on modern computers 
Ø  What is 'efficient'? It depends 

  Some problems cannot be solved by computer. 
Ø  Provable! We can't wait for smarter algorithms 

  Some problems have no efficient solution 
Ø  Provably exponential 2n so for "small" n … 

  Some have no known efficient solution, but … 
Ø  If one does they all do! 

Compsci 101, Fall 2012 20.7 

Entscheidungsproblem  
  What can we program? 

Ø  What kind of computer? 

  What can't we program? 
Ø  Can't we try harder? 

 
  Can we write a program that will determine if any program 

P will halt when run on input S? 
Ø  Input to halt: P and S 
Ø  Output: yes/no halts 

Compsci 101, Fall 2012 20.8 

Good sites: http://del.icio.us/ 
  What is social bookmarking? 

Ø  Why is del.icio.us interesting? 
Ø  Who posts, who visits? 

  What about a website of interesting websites? 
Ø  What would you expect to find there? 
Ø  Would the site list itself? 

  What about sites that list/link to themselves? 
Ø  What about a site with all sites that list themselves? 



Compsci 101, Fall 2012 20.9 

Bad sites: http://haz.ardo.us 
  Sites listing bad sites (don’t visit them?) 

Ø  Where would this be useful? 
Ø  What about censorship (internationally?) 
Ø  Is this a good site or a bad site? 

  What about sites that list/link themselves? 
Ø  Is haz.ardo.us there? 

  Website of all the sites that don’t list themselves? 
Ø  Is notlisted.com listed on notlisted.com? 

Compsci 101, Fall 2012 20.10 

halting module/problem: writing doesHalt 

""" 
    function doesHalt returns True if progname 
    halts when run on input, and False if progname 
    doesn't halt (infinite loop) 
""" 
    def doesHalt(progname,input): 
        #code here 
  
    name = "SpreadingNews.py" 
    data = "input.txt" 
    if doesHalt(name,data): print "program ended!"    
 

  We're assuming doesHalt exists – how to use it? 
Ø  It works for any program and any data! Not just one, that's 

important in this context 

Compsci 101, Fall 2012 20.11 

How to tell if X stops/halts on Y 
import halting 
def runHalt(): 
    prog = "SpreadingNews.py"; 
    input = "["abc", "def", "hij"]" 
    if halting.doesHalt(prog,input): 
        print prog,"stops" 
    else: 
        print prog,"loops 4ever" 

  Can user enter name of program, X? Input, Y? 
Ø  What's the problem with this program? 

Compsci 101, Fall 2012 20.12 

Consider this module Confuse.py 

import halting 
print "enter name of program", 
prog = raw_input() 
if halting.doesHalt(prog,prog): 
    while True: 
        pass 
print "finished" 
 

  We want to show writing doesHalt is impossible 
Ø  Proof by contradiction: 
Ø  Assume possible, show impossible situation results 

  Can a program read a program? Itself? 



Compsci 101, Fall 2012 20.13 

Some problems take forever, but … 
  Can we visit all cities, no repeats, using Southwest, 

for less than $123,329.50 
Ø  RDU->MCO->…->…->…->…->DEN 
Ø  RDU->DEN->…->…->…->…->MCO 
Ø  repeat and test, what's the issue here? 
Ø  Can we find shortest path for packets on Internet? Yes! 
Ø  Can we find longest path for silent meditation? No! 
Ø  We don't know how, but if we did!!! 

  Contrast towers of Hanoi, 2n moves always! 

Compsci 101, Fall 2012 20.14 

Are hard problems easy? Clay Prize 
  P = easy problems, NP = “hard” problems 

Ø  P means solvable in polynomial time 
• Difference between N, N2, N10 ? 

Ø  NP means non-deterministic, polynomial time 
• guess a solution and verify it efficiently 

  Question: P = NP ? 
Ø  if yes, a whole class of difficult problems , the 
NP-complete problems, can be solved efficiently 

Ø  if no, no hard problems can be solved efficiently 
Ø  showing the first problem was NP complete was 
an exercise in intellectual bootstrapping, 
satisfiability/Cook/(1971) 

Compsci 101, Fall 2012 20.15 

How is Python like all other 
programming languages, how is it 
different? 

Compsci 101, Fall 2012 20.16 

A Rose by any other name…C or Java? 
  Why do we use [Python|Java] in courses ? 

Ø  [is|is not] Object oriented 
Ø  Large collection of libraries 
Ø  Safe for advanced programming and beginners 
Ø  Harder to shoot ourselves in the foot 

  Why don't we use C++ (or C)? 
Ø  Standard libraries weak or non-existant (comparatively) 
Ø  Easy to make mistakes when beginning 
Ø  No GUIs, complicated compilation model 
Ø  What about other languages? 


