Due by the end of October 25, 2013

Problem 1

Let $X_1, X_2, ..., X_n$ be *n* independent random variables such that X_i takes value $1/p_i$ with probability p_i and 0 otherwise. Then, show that for any *p* such that $p \le p_i$ for each *i*, any $\epsilon \in (0, 1)$, and any $N \ge n$, the following bound holds:

$$P\left(\left|\sum_{i=1}^{n} X_i - n\right| > \epsilon N\right) < 2e^{-0.38\epsilon^2 pN}$$

Problem 2

Given an undirected, unit-capacity graph G, consider the randomized edge contraction algorithm for the global min-cut problem.

- (i) Show that in any run of the edge contraction algorithm, the edges contracted form a spanning tree of G.
- (ii) Let \mathcal{T} denote all the spanning trees in G. If we run the contraction algorithm, we will get a random spanning tree in \mathcal{T} formed by the contracted edges, and we denote this distribution of spanning trees by D_1 . On the other hand, if we assign a random weight in (0, 1) to each edge and compute a minimum spanning tree using Kruskal's algorithm, then we obtain another distribution D_2 over \mathcal{T} . Show that these two distributions are identical.

Problem 3

In this problem, we have an undirected, unit-capacity graph G with n vertices and m edges.

- (i) Given a constant α ≥ 1, run the edge contraction algorithm on G until we have 2α vertices and then output a cut uniformly at random from the cuts in the resulting contracted graph. Define an α-min cut to be a cut with size at most αλ, where λ is the size of the min-cut. Show that any fixed α-min cut is output by the above randomized procedure with probability at least 1/2α. Conclude that the number of α-min cuts is at most n^{2α}.
- (ii) Suppose every edge in G fails with probability $p \in (0, 1)$ and let p_0 denote the probability that the graph G is disconnected as a result of the edge failures. Show that if $p^{\lambda} > 1/n^2$, then p_0 can be estimated up to $(1 \pm \epsilon)$ error (for any fixed ϵ) using a polynomial number of samples in the Monte Carlo method.
- (iii) If $p^{\lambda} \leq 1/n^2$, show that $p_0 \in (1 \pm \epsilon)p_1$, where p_1 is the probability that some α^* -min cut fails for a fixed constant $\alpha^* \geq 1$. Write a DNF formula on all the α^* -min cuts such that p_1 can be estimated using the number of satisfying assignments of the DNF formula.

(iv) Use importance sampling to conclude that there exists a polynomial time algorithm to estimate p_0 up to a factor of $(1 \pm \epsilon)$.