COMPSCI 530: Design and Analysis of Algorithms

Oct 29, 2013

Lecture 17

Lecturer: Pankaj K. Agarwal

Scribe: Fangjian Guo

1 Overview

In this lecture, we will study approximation algorithms for problems related to range spaces, especially the hitting set problem.

2 Range Spaces and the Hitting Set Problem

2.1 Range spaces

A range space is also called a set system or a hypergraph. Its definition is given as follows.

Definition 1. A range space Σ is a pair $\Sigma = (X, R)$, where X is a finite set of objects and the ranges R is a set of subsets of X.

For example, suppose we have $X = \{1, 2, 3\}$ and $R = \{\{1\}, \{2, 3\}, \{1, 2, 3\}\}$, then $\Sigma = (X, R)$ is a range space. It shall be noted that *R* does not need to include all the subsets of *X*. Yet, when *R* is indeed the collection of all the subsets of *X*, the size of *R* is exponential, namely

$$|R|=2^n,$$

where we denote n = |X|.

In this lecture, we will instead study the ranges spaces that are *well-behaved*, which means the size of *R* is polynomial, namely

$$|R| \le n^{O(1)}$$

The linear classification for points in the \mathbb{R}^2 is such an example.

Example 1. Let us suppose we have X as a finite set of points in \mathbb{R}^2 , which can be imagined as twodimensional data points drawn on a plane. For every line we draw in the plane, it will cut the space into two half-spaces. We can define the ranges *R* to be the set of points in a half-space for all possible lines, i.e.

$$R = \{ \gamma \cap X \mid \gamma \text{ is a half-space} \}.$$

Then we will show |R| is polynomial instead of exponential.

To count the size of |R|, as shown in Figure 1, one can consider moving and rotating the line l_1 while the classification does not change, until it is in the position of l_2 , which passes through two points. That is to say, such a line will be the boundary that separates one classification from another, corresponding to a subset from another subset in R. By counting all these boundary lines, we know $|R| = 2 \times {n \choose 2} = O(n^2)$. The same trick can be applied to other definitions of R. For example, if we let R to be $R = \{\gamma \cap X \mid \gamma \text{ is a disk (circle)}\}$, then we know $|R| = O(n^3)$ because three points can uniquely determine a circle.

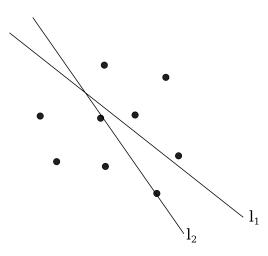


Figure 1: Moving and rotating l_1 to l_2 until it passes through two points.

2.2 The hitting set problem

Definition 2. For a range space $\Sigma = (X, R)$, a hitting set is a subset $H \subseteq X$ such that $\forall \gamma \in R$, it holds that $H \cap \gamma \neq \emptyset$.

That is, a hitting set *H* "hits" every range by having at least one of its element appearing in every range. A hitting set problem can be formulated as a 0-1 linear programming. If we define z_i for every element $x_i \in X$, where $z_i = 1$ denotes x_i is included by *H* and $z_i = 0$ otherwise. The LP can be written as below.

$$\min \sum_{i=1}^{n} z_i$$

s.t. $\sum_{x_i \in \gamma} z_i \ge 1 \quad \forall \gamma \in R,$
 $z_i \in \{0, 1\}.$

Next we introduce ε -net as a relaxed version of the hitting set. Instead of requiring the set to "hit" every range, an ε -net is only required to hit the ranges that are "heavy" enough. To measure the heaviness, we can use a weight function $w: X \to \mathbb{R}^+$ that puts a weight for every object. And the weight of a set is simply defined as the total weights of the objects included, i.e.

$$w(\gamma) = \sum_{x \in \gamma} w(x).$$

Definition 3. For a range space $\Sigma = (X, R)$, and for $0 < \varepsilon < 1$, a subset $A \subseteq X$ is an ε -net if $A \cap \gamma \neq \emptyset$ for all $\gamma \in R$ such that $w(\gamma) \ge \varepsilon w(X)$.

When we choose an uniform weight w(x) = 1 for all $x \in X$, the condition is reduced to the condition on size $|\gamma| \ge \varepsilon |X|$.

2.3 Approximation algorithm for the hitting set

Generally speaking, it is difficult to approximate a hitting set problem. The best one can do for a general hitting set problem in polynomial time is an approximation with factor $O(\log n)$. Yet, an ε -net is easier to

find an approximate or randomized solution if it is defined on a well-behaved range space (|R| is polynomial). We state two facts without proof.

Fact 1. For a range space $\Sigma = (X, R)$ with $|R| \leq |X|^{O(1)}$, an ε -net of size $O(1/\varepsilon)$ can be computed in $(|X|/\varepsilon)^{O(1)}$ time.

Fact 2. For a range space $\Sigma = (X, R)$ with $|R| \le |X|^{O(1)}$, a random subset of size $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ formed by including each $x \in X$ with probability w(x)/w(X) is an ε -net with probability $p \ge 2/3$.

Then, for a well-behaved range space, we can convert the hitting set problem to an ε -net problem and use either of the aforementioned algorithm to find an approximate or a probabilistically correct solution. As we know an ε -net only cares the ranges that are heavy, we can do the conversion by choosing ε and weights w carefully such that every range becomes heavy, that is $w(\gamma) \ge \varepsilon w(X)$ for all $\gamma \in R$.

Let us suppose we have an oracle that can tell us the size k of the optimal hitting set. Then we set $\varepsilon = \log \sqrt{2}/k$, where the choice of the constant will be clear later. The algorithm for choosing the weights w goes as follows.

Initially, we set w(x) = 1 for all $x \in X$. While $\exists \gamma \in R$ such that $w(\gamma) < \varepsilon w(X)$, we arbitrarily pick such a γ and double the weights for the objects included by γ , i.e.

$$w(x) \leftarrow 2w(x) \quad \forall x \in \gamma.$$

Repeat it until $w(\gamma) \ge \varepsilon w(X)$ for all $\gamma \in R$.

Theorem 3. The algorithm will terminate in $O(k \log n)$ time.

Proof. Let w_i be w(X) after *i* iterations. Clearly, $w_0 = |X| = n$. In every iteration, we double the weight for the range that is lighter than εw_i . Therefore, we have

$$w_{i+1} \leq w_i + \varepsilon w_i = (1 + \varepsilon) w_i$$

By unrolling it, we have

$$w_i \leq (1+\varepsilon)^i n \leq \exp(\varepsilon)^i n = \exp(\varepsilon i + \log n)$$

Supposing the optimal hitting set is $H = \{x_1, x_2, \dots, x_k\}$. By the definition of a hitting set, at least one of its element will appear in the range that we pick for weight-doubling in each iteration. Then, after *i* iterations, every $x_i \in H$ should be weight-doubled for at least i/k times, which gives us the lower bound for w_i as

 $w_i \ge w(H)$ after *i* iterations $\ge k2^{i/k}$.

By combining both bounds, we have

$$k2^{i/k} \le \exp(\varepsilon i + \log n).$$

Now we can arrive at

$$i \le \frac{k \log n}{\log(2)/2} = O(k \log n).$$

Clearly, when the algorithm terminates, all ranges will be heavy and thus an ε -net will also be a hitting set. However, in practice, we do not have an oracle and therefore do not know k. We can instead start with some guess of k and then run the reweighting algorithm for at most $\frac{k \log n}{\log(2)/2}$ iterations. If the algorithm terminates within the time limit, then we can continue to find an ε -net; if not, we double our guess for k and repeat the process until the algorithm terminates within the limit.

3 Summary

In this lecture, we have introduced range spaces, the hitting set and the ε -net. We have seen that we can convert a hitting set problem on a well-behaved range space to an ε -net problem by a reweighting algorithm in polynomial time.

4 Further Reading Material

1. Har-Peled, Sariel. *Geometric Approximation Algorithms*. American Mathematical Soc., 2011. http://sarielhp.org/book/