
COMPSCI 530: Design and Analysis of Algorithms 11/14/2013

Lecture 22
Lecturer: Debmalya Panigrahi Scribe: Abhinandan Nath

1 Overview

In the last class, the primal-dual method was introduced through the metric facility location problem. This
lecture discusses two more problems where the primal-dual schema is used to give exact and approximate
algorithms respectively for the shortest path and the steiner forest problem.

2 Shortest s− t path

Given an undirected graph with non-negative costs associated with the edges, we want to find a shortest
path between two specified vertices s and t. In this section, we will develop a primal-dual algorithm for this
problem, which will turn out to be Dijkstra’s algorithm in a different guise.

2.1 The LP

The LP for the problem and its dual are given below

min ∑
e∈E

cexe max∑
S

yS

∑
e∈δ (S)

xe ≥ 1 ∀S : s ∈ S, t /∈ S ∑
S:e∈δ (S)

yS ≤ ce ∀e ∈ E

xe ≥ 0 ∀e ∈ E yS ≥ 0 ∀S : s ∈ S, t /∈ S

2.2 The Algorithm

The primal-dual method increases the dual variables gradually until some dual constraint becomes tight.
Then, the primal variable corresponding to the tight dual constraint is ‘bought’ (or selected), and the pro-
cess continues till we get a feasible primal solution. Next, we compare the value of the primal solution to
the value of the dual solution to get an appropriate approximation factor (or an exact algorithm). By weak
duality, the ratio between the primal and the dual value is an upperbound on the approximation factor.

In the current problem, at each step we have to choose what dual variables we increase. We increase
the dual variable corresponding to the connected component containing s. Initially, it is the set {s}. Once a
constraint becomes tight, the corresponding edge is selected and the component grows. This continues till
the component contains t. However we might have included too many edges. So we do a clean up step at
the end to retain only those edges necessary to ensure an s− t path. The algorithm is stated below

22-1

Algorithm 1 Primal-Dual s-t path
1: y← 0
2: A← φ

3: i← 0
4: while A is not feasible do
5: i← i+1
6: Let S be the connected component containing s
7: Increase yS until ∃ei ∈ δ (S) : ∑S:ei∈δ (S) ys = cei

8: A← A∪{ei}
9: end while

10: for j← i down to 1 do
11: if A−{e j} is still feasible then
12: A← A−{e j}
13: end if
14: end for
15: return A′← A

2.3 Analysis

We will argue that the cost of the edges included in A′ is exactly equal to the dual value, thereby giving an
exact algorithm. We have

∑
e∈A′

ce = ∑
e∈A′

∑
S:e∈δ (S)

yS = ∑
S

yS|A′∩δ (S)|

The following lemma will then imply that the value of the solution is exactly equal to the dual value.

Lemma 1. For all S such that yS > 0, |A′∩δ (S)|= 1.

Proof. Consider the stage when we increase a particular yS. Let AS be the edges in S at this stage. Letting
B = A′−AS, we see that in the clean up phase, all the edges in B were considered for deletion before all the
edges in AS and were retained because deleting them would make the solution infeasible. Now, A′ ∩ δ (S)
will contain edges only from B. Consider an s− t path P in AS ∪B. Suppose it crosses the cut S multiple
times. Consider the last such edge (u,v). Since u is in the same connected component as s, there exists a
path entirely in AS from s to u, and this path along with the remaining part of P from v to t gives an s− t
path. Thus, all the remaining edges of P crossing S are unnecessary, and would have been deleted in the
clean up phase. Thus, all s− t paths in AS cross S only once. Also, all these paths converge and cross S at
only one edge, because if we have multiple crossing edges, all but one would have been deleted in the clean
up phase because deleting them still retains an s− t path. Any other crossing edge not part of an s− t path
will also be deleted in the clean-up phase, thus implying that |A′∩δ (S)|= 1.

3 Steiner forest

In the Steiner forest problem, we are given an undirected graph G = (V,E) with costs ce ≥ 0 for each edge
e. We are also given l pairs of vertices {(si, ti) : i = 1, . . . , l)}. Our goal is to choose a minimum cost subset
of edges so that the for all i, si and ti are are connected.

22-2

3.1 The LP

Let Si = {S ⊆ V : |S∩{si, ti}| = 1}. A linear program and its dual for the Steiner forest problem are given
below

min ∑
e∈E

cexe max ∑
S:S∈Si for some i

yS

∑
e∈δ (S)

xe ≥ 1 ∀S : S ∈ Si for some i ∑
S:e∈δ (S)

yS ≤ ce ∀e ∈ E

xe ≥ 0 ∀e ∈ E yS ≥ 0 ∀S : S ∈ Si for some i

3.2 The Algorithm

We use an approach similar to the previous problem, but now we increase the values simultaneously and
unifromly for all the connected components not having both s j and t j for any j. The algorithm is stated
below

Algorithm 2 Primal-Dual Steiner forest
1: y← 0
2: A← φ

3: i← 0
4: while A is not feasible do
5: i← i+1
6: Ci←{S : S is a connected component of (V,A) : |S∩{s j, t j}= 1 for some j}
7: Increase yS for all S ∈Ci until ∃ei /∈ A : ∑S:ei∈δ (S) ys = cei

8: A← A∪{ei}
9: end while

10: for j← i down to 1 do
11: if A−{e j} is still feasible then
12: A← A−{e j}
13: end if
14: end for
15: return A′← A

4 Analysis

Lemma 2. For any i,

∑
C∈Ci

|A′∩δ (C)| ≤ 2|Ci|

Proof. Let Ai denote the set of edges chosen till iteration i. Let B = A′−Ai. Then Ai ∪B is a feasible
solution, but removing any edges from it renders the set infeasible.

22-3

Consider the graph (V ′,B) obtained by contracting the connected components induced by Ai. We call
the vertices corresponding to components in Ci red vertices, and the remaining are called blue vertices. The
edges in B form a forest, because if not then removing an edge of a cycle in B still maintains feasibility,
cotradicting the definition of B. Then, |A′ ∩ δ (C)| is same as the degree of the vertex corresponding to
C ∈Ci in the graph (V ′,B). Thus we need to show that

∑
v∈Red

deg(v)≤ 2|Red|

For this, we need the following claim

Claim 3. If v ∈ Blue then deg(v) 6= 1

Proof. Suppose there exists a blue vertex v such that deg(v) = 1. Suppose we delete the edge e incident
to v. Since v is a blue vertex, there does not exist any (si, ti) such that |C∩ {si, ti}| = 1, where C is the
connected component corresponding to v. Thus, deleting e still keeps the set of edges feasible, contradicting
the definition of B.

Thus we have,

∑
v∈Red

deg(v) = ∑
v∈Red∪Blue

deg(v)− ∑
v∈Blue

deg(v)

≤ 2(|Red|+ |Blue|)−2|Blue|
= 2|Red|

The second step uses the fact that the sum of the degrees in a forest is at most twice the number of vertices.

Using lemma 2 we prove the following, thereby showing a 2-approximation factor.

Theorem 4.

∑
e∈A′

ce ≤ 2∑
S

yS

Proof. We have,

∑
e∈A′

ce = ∑
e∈A′

∑
S:e∈δ (S)

yS = ∑
S

yS|A′∩δ (S)|

Thus we have to show

∑
S

yS|A′∩δ (S)| ≤ 2∑
S

yS

We use induction on the number of iterations of the algorithm to prove the claim. Initially, A = φ and y = 0
and the inequality holds trivially.

Suppose the claim holds for the ith iteration. In the (i+ 1)th iteration, suppose we increase the dual
variables unifromly by ε . Then the LHS of the inequality increases by ε ∑S∈Ci+1 |A

′ ∩ δ (S)|. The RHS
increases by 2ε|Ci+1|, which is at least the increase in the LHS by lemma 2. Thus the inequality holds after
the (i+1)th iteration too.

22-4

5 Summary

In this lecture, we have illustrated the primal-dual method by giving an exact algorithm for the single pair
shortest path problem and a 2-approximation algorithm for the Steiner forest problem.

References

[1] http://courses.csail.mit.edu/6.891-s00/lecture8.ps

22-5

