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1 Overview

Push-Relabel algorithm and Scaling algorithms are introduced. Examples and running time analysis of the
algorithms are described.

2 Algorithm and Main Operations

In this section we will introduce the main operations and data structures employed by push-relabel algo-
rithms, as well as how these algorithms operate. Push-relabel algorithms are used to compute maximum
flows of networks. They process one vertex at a time, examining the vertexs neighbors in the residual
network. They maintain a preflow, which is a function in positive real numbers defined as follows: [Cor09]

Definition 1 (Preflow). f : (u,v)→ R+

1. f (u,v)≤ c(u,v)

2. f or∀u ∈V\{s, t} e(u) = ∑v∈V f (v,u)−∑v∈V f (u,v)≥ 0

We call e(u) the excess flow into vertex u. It is the difference between flow in and flow out at a vertex.

The residual network is defined as before [Cor09]:

Definition 2 (Residual Network). A residual network G f is such that

• c f (u,v) = c(u,v)− f (u,v)

• c f (v,u) = c(v,u)+ f (v,u)
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Invariant: @s− t path in residual network.
A push-relabel algorithm performs two main operations iteratively: either push flow excess from a vertex

of the graph to one of its neighbors, or relabeling a vertex. Operation choosing depends on the heights of
the vertices, which is a function in positive integer defined as follows [Cor09]:

Let f be a preflow on network G = (V,E) with source s and sink t. Function h : V → N is the height
function if

• h(s) = |V |

• h(t) = 0

• h(u)≤ h(v)+1 f or∀(u,v) ∈ E f .

Then, we move on to introduce the main operations.
PUSH

PUSH(u,v) can be performed if c f (u,v) > 0 (called u is overflowing.) It reduces min(e(u),c f (u,v))
from e(u), the excess flow of u and adds this value to e(v) and f (u,v), the flow on (u,v). It is represented
by the following code [Cor09]:

Algorithm 1 PUSH(u, v)
1: ∆ f (u,v) = min(e(u),c f (u,v))
2: if (u,v) ∈ E then
3: (u,v). f = f (u,v)+∆ f (u,v)
4: else(v,u). f = f (v,u)−∆ f (u,v)
5: end if
6: e(u) = e(u)−∆ f (u,v)
7: e(v) = e(v)+Delta f (u,v)

A push is called saturating push if the edge (u,v) it was applied on in the residual network becomes
saturated, that is, c f (u,v) = 0. Otherwise, it is called a nonsaturating push.
RELABEL

RELABEL(u) can be performed if c f (u,v)> 0 and h(u)≤ h(v) for all (u,v) ∈ E f . It sets the height of u
to be the height of the lowest neighbor plus 1. It is represented by the following code [Cor09]:

Algorithm 2 RELABEL(u)
1: h(u) = min(h(v) : (u,v) ∈ E f )+1

The generic push-relabel algorithm performs PUSH and RELABEL in the following manner:

Algorithm 3 PUSH-RELABEL
1: INIT −PREFLOW (G)
2: INIT −HEIGHT (G)
3: while Any PUSH or RELABEL is able to be performed do
4: perform the PUSH or RELABEL
5: end while
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Algorithm 4 INIT-PREFLOW(G)
1: f or∀uandv, f (u,v) = 0and f (s,v) = c(s,v)

Algorithm 5 INIT-HEIGHT(G)
1: f or∀u,h(u) = 0;h(s) = |V |

3 Complexity

Now that we have understand the basic operations and steps of push-relabel algorithms, we can analyze
their complexity. We will first prove a series of lemmas, and finally come to the conclusion that the generic
push-relabel algorithm is O(|V |2|E|) [Cor09].

First, we need to prove the following lemma:

Lemma 1. At any iteration of PUSH-RELABEL algorithm, h(u)≤ 2|V |−1 f or∀u ∈V [Cor09].

Proof. To complete the proof, we need to prove another lemma first:

Lemma 2. If e f (v)> 0, then v has a path in E f to s [Tre].

Proof. Induction: Initially, only vertices v such that (s,v) ∈ E have excess. If a flow is sent from u to v,
since there is a path p from u to s by induction, and sending the flow adds an edge (v,u) to E f , we know that
v has excess and (v,u)∪ p is a path from v to s.

According to the definition of height, h(s) = |V | and h(t) = 0. The height of both vertices are not greater
than 2|V |−1.

Then, observe u ∈V −{s, t}. At the beginning, h(u) = 0≤ 2|V |−1. After relabeling, u is overflowing.
The lemma above ensures that there is a path p = (u,v1, ...,vd−1,s) from u to s in G f . By the definition of
height, we know that h(vi)≤ h(vi+1 +1). Then, we have h(u) = h(s)≤ h(vd)≤ h(s)+(|V |−1) = 2|V |−1.

Then, we can continue to find out the bound on saturating pushes.

Lemma 3. At any iteration, the number of saturating pushes is less than 2|V ||E| [Cor09].

Proof. Suppose a saturating push from u to v has been performed. Consequently, h(v) = h(u)− 1. Before
performing another push from u to v, a push from v to u must be done, which is possible only if h(v) =
h(u)+1. Thus, h(v) must increase by at least 2. We know from the lemma above that height is never larger
than 2|V | − 1. That means that any vertex can increase its height by 2 at most |V | times. We know that
between two saturating pushes between u and v, height of one of these vertices must be increased by 2.
Therefore, there are at most 2|V | saturating pushes between these two vertices. For the whole graph, there
can be at most 2|V ||E| saturating pushes.

Next, we find out the bound on nonsaturating pushes.

Lemma 4. At any iteration, the number of nonsaturating pushes is less than 4|V |2(|V |+ |E|).
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Proof. We use amortized analysis [Cor09]. Use the potential function φ = ∑v∈V,e(v)>0 h(v). We observe that
relabeling u increases φ by at most 2|V |, since the h(u) is at most 2|V |− 1. At the same time, a saturating
push from u to v increases φ by at most 2|V |, since only v can become overflowing and h(v) is at most
2|V |− 1. Now consider a nonsaturating push from u to v. Since u is not overflowing after the push and it
may be overflowing after the push, φ has decreased by h(u) and increased by 0 or h(v). From h(u)−h(v) = 1
we know that φ has decreased by at least 1. From above lemmas we know that the total number of relabelings
and saturating pushes is at most (2|V |)(2|V |2)+(2|V |)(2|V ||E|) = 4|V |2(|V |+ |E|), which will be reduced
by nonsaturating pushes. Therefore, we have proved the bound of nonsaturating pushes.

The last step before computing the complexity of the algorithm is finding out the complexity of each
individual operation:

Lemma 5. The running time of any push or relabel operation is O(1) [Cor09].

Proof. In the assignment we have implemented the algorithm with O(1) running time using lists [Cor09].

Finally, we can compute the running time of the generic push-relabel algorithm:

Lemma 6. The running time of the push-relabel generic algorithm is O(V 2E) [Cor09].

Proof. Comparing the bounds of numbers of relabeling as well as nonsaturating and saturating pushes, we
see that the number of nonsaturating pushes is dominant. Thus, the number of any operations performed by
the algorithm is at most O(V 2E). Therefore, the running time of the algorithm is the same value [Cor09].

4 Summary

The lecture introduces push-relabel algorithms. Important features and running time analysis of these al-
gorithms are discussed. Using dynamic trees, we can perform unsaturating pushes in parallel to obtain a
running time of O(mn logn). This is the best known strongly polynomial algorithm [Cor09].
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