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Administrivia

http://www.cs.duke.edu/courses/fall13/compsci590.3/
Wed/Fri 1:25 - 2:40 PM

“Reading Course + Project”
— No exams!

— Every class based on 1 (or 2) assigned papers that students must read.

Projects: (60% of grade)

— Individual or groups of size 2

Class Participation (other 40%)

— May be one simple assignment ... 1 short (20 min) presentation

Office hours: by appointment
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Administrivia

* Projects: (60% of grade)
— Theory/algorithms for privacy
— Implement/adapt existing work to new domains

— “Break” an existing privacy algorithm

* @Goals:
— Literature review
— Some original research/implementation

 Timeline (details will be posted on the website soon)
— Sep 27: Choose Project (ideas will be posted ... new ideas welcome)
— Oct 11: Project proposal (1-4 pages describing the project)
— Nov 8: Mid-project review (2-3 page report on progress)
— Dec 4: Final presentations and submission (6-10 page conference style paper

+ 10-15 minute talk)
. Duke
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Why you should take this course?

1. Privacy is (one of) the most important grand challenges in
managing today’s data!

1. “What Next? A Half-Dozen Data Management Research Goals for Big
Data and Cloud”, Surajit Chaudhuri, Microsoft Research

2. “Big data: The next frontier for innovation, competition, and productivity”,
McKinsey Global Institute Report, 2011
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Why you should take this course?

2. \Very active field and tons of interesting research.
We will read papers in:
—  Data Management (SIGMOD, VLDB, ICDE)
—  Theory (STOC, FOCS)
—  Cryptography/Security (TCC, SSP, NDSS)
—  Machine Learning (KDD, NIPS)
—  Statistics (JASA)
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Why you should take this course?

3. Intro to research by working on a cool project
—  Read scientific papers about an exciting data application
—  Formulate a problem
—  Perform a scientific evaluation
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Today

Bird’s-eye view introduction to big-data and privacy
Privacy attacks in the real-world

(In)formal problem statement

Course overview

(If there is time) A privacy preserving algorithm
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INTRODUCTION
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Data Explosion: Internet

Data Points
Share and Share Alike

The amount of data shared online in one week tops what the Hubble Space
Telescope collected in its first 20 years. Here's a snapshot of our habits.

Estimated User Data Generated per day [Ramakrishnan 2007]
e 8-10 GB public content
e ~4 TB private content

Duke
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Data Explosion: Social Networks

91% of online users ...

25% of all time spent online ...
200 million tweets a day ...
millions of posts a day ...

6 billion photos a month ...
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Data Explosion: Mobile

* ~5 billion mobile phones in use!

Terabytes per Month 92% CAGR 2010-2015

6,000,000

6.3 EB

3.8EB

3,000,000
2.2EB
1.2 EB
0.24 EB DAES
——

2010 201 2012 2013 2014 2015

Source: Cisco VNI Mobile, 2011 DUke
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Web

Big-Data impacts all aspects of our life
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Personal Big-Data

Person 1 Person 2 Person 3 Person N
) oo
\

Hospital
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? \\\\\\‘
Doctors Medical Economists Recommen-  Information
Researchers dation Retrieval

Algorithms Researchers

Lecture 1:590.03 Fall 13 16 Duke

UNITWVYERSIT Y



Sometimes users can control and know
who sees their information ...

Who Can View My Full Profile

My Friends Only

Public

O® 0

Only Users Over 18
Privacy Settings

Friend Requests - Require email or last name

(| ]

Comments - approve before posting

Hide Online Now

Show My Birthday to my Friends }‘

Photos - No Forwarding

e

Blog Comments - Friends Only

Friend Requests - No Bands
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but not always

Home Profile Find People Settings Help Sign out

Got a table to myself this time. Feel free
to stop by and sit in it. (@ Starbucks)

alEASE ROB ME

;L) o) u t 0 vr)psn ;me _.:J

Check out our on the CDT website.

Pilike & send W 29,523 people like this. More Info

Check your own Twitter timeline for checkins

Lecture 1 :590.03 Fall 13 18 u



The Massachusetts Governor
Privacy Breach [Sweeney IJUFKS 2002]

o Narme
o SSN . Zip
oVisit Date .

: :  Birth
eDiagnosis date
*Procedure

eMedication -« Sex
eTotal Charge

Medical Data

Lecture 1:590.03 Fall 13 19 DUke

UNIVYERSITY



The Massachusetts Governor
Privacy Breach [Sweeney IJUFKS 2002]

o Nrarme eName
o SSN - Zip  *Address
*Visit Date - e*Date
oDiagnosiS ’ 3::: Registered
eProcedure *Party
eMedication . Sey affiliation
eTotal Charge *Date last

| voted

Medical Data Voter List
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The Massachusetts Governor
Privacy Breach [Sweeney IJUFKS 2002]

o Nammre

o SS5N

e\/isit Date
eDiagnosis
eProcedure
eMedication
eTotal Charge

Medical Data

« Zip

 Birth

date

e Sex

e Governor of MA
eName uniquely identified
*Address using ZipCode,

SR Birth Date, and Sex.
Registered

eParty . . .
affiliation Name linked to Diagnosis

eDate last
voted

Voter List
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The Massachusetts Governor
Privacy Breach [Sweeney IJUFKS 2002]

* 87 % of US population

o Narme eName uniquely identified
*SSIN - Zip  *Address using ZipCode,
e Vg Birth Date, and Sex.
oDiagnosiS e Reglstered
eProcedure =Party
eMedication . ey affiliativ..
eTotal Charge *Date last

voted

Quasi Identifier
Medical Data Voter List
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AOL data publishing fiasco ...

“.. Last week AOL did another stupid thing ...
... but, at least it was in the name of science...”

Alternet, August 2006
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AOL data publishing fiasco ...

AOL “anonymously” released a list of 21 million web search queries.

Ashwin222
Ashwin222
Ashwin222
Ashwin222
Pankajl56
Pankajl56
Cox12345
Cox12345
Cox12345
Cox12345
Ashwin222
Ashwin222

&

Uefa cup

Uefa champions league
Champions league final
Champions league final 2007
exchangeability

Proof of deFinitti’s theorem
Zombie games

Warcraft

Beatles anthology

Ubuntu breeze

Grammy 2008 nominees
Amy Winehouse rehab

\

>
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AOL data publishing fiasco ...

AOL “anonymously” released a list of 21 million web search queries.

UserlDs were replaced by random numbers ...

865712345
865712345
865712345
865712345
236712909
236712909
112765410
112765410
112765410
112765410
865712345
865712345

&

Uefa cup

Uefa champions league
Champions league final
Champions league final 2007
exchangeability

Proof of deFinitti’s theorem
Zombie games

Warcraft

Beatles anthology

Ubuntu breeze

Grammy 2008 nominees
Amy Winehouse rehab

\

.
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Privacy Breach

[NYTimes 2006]

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr.

. , 0 2006
Published: August 9, 2006 B siGNINTOE.

Tb
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Privacy breaches on the rise...

N [ T I: |_ | X Why 'Anonymous' Data Sometimes Isn't

By Bruce Schneier [ 12.13.07

Last year, Netflix published 10 million movie rankings by 500,000 customers, as part of a challenge
for people to come up with better recommendation systems than the one the company was using.

Ehe New York Times Business Day

Tech nOIC @ Facebook Ads

Reach the exact audience you want with

] relevant targeted ads.
WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HH

Marketers Can Glean Private Data on
Facebook

TECH | 2/16/2012 @ 11:02AM | 837,678 views

How Target Figured Out A Teen
Girl Was Pregnant Before Her
TARGET Father Did
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Privacy Breach: Informal Definition

A data sharing mechanism M
that allows

an unauthorized party&
to learn sensitive information about any individual,

which %‘. could not have learnt without access to M.
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Statistical Database Privacy (Trusted Collector)

Utility: fprivate approximates f

Privacy: No breach about any individual

fprivate (DBJ 5)
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Statistical Database Privacy (Untrusted Collector)

Server

f(.)

Individual 1J\ Individual 2J\ Individual 3J\ . o o |Individual N

r, r, I r, I r,

. c ” D
Lecture 1 :590.03 Fall 13 30 u e

UNIVYERSITY




Statistical Databases in real-world applications

e Trusted Data Collectors

Application | Data Collector | Third Party Private Function (utility)
(adversary) | Information

Medical Hospital Epidemiologist Disease Correlation between
disease and geography

Genome Hospital Statistician/ Genome Correlation between
analysis Researcher genome and disease
Advertising  Google/FB/Y! Advertiser Clicks/ Number of clicks on an ad

Browsing by age/region/gender ...

Social Facebook Another user Friend Recommend other users

Recommen- links / or ads to users based on
dations profile social network
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Statistical Databases in real-world applications

e Untrusted Data Collectors

Application Data Collector Private Function (utility)
Information

Location Verizon/AT&T Location Local Search
Services
Recommen- Amazon/Google Purchase Product
dations history Recommendations
Traffic Internet Service Browsing Traffic pattern of
Shaping Provider history groups of users
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Statistical Database Privacy is not ...

* Encryption:
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Statistical Database Privacy is not ...

* Encryption:
Alice sends a message to Bob such that Trudy (attacker) does not
learn the message. Bob should get the correct message ...

e Statistical Databases:
A set of individuals want Bob (attacker) to learn aggregate
properties about the data, but not properties about individuals.

Duke
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Statistical Database Privacy is not ...

 Computation on Encrypted Data:
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Statistical Database Privacy is not ...

Computation on Encrypted Data:

- Alice stores encrypted data on a (malicious) server.

- Server performs computation on the encrypted data and returns
encrypted answer to Alice.

Statistical Databases:
- Alice wants the server to learn aggregate properties from the

database.
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Statistical Database Privacy is not ...

e The Millionaires Problem:
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Statistical Database Privacy is not ...

Secure Multiparty Computation:

- A set of agents each having a private input xi ...

- ... Want to compute a function f(x1, x2, ..., xk)

- Each agent must learn no other information than what can be
inferred from their private input and the answer.

Statistical Database:
Should not learn any private input
(... function output can disclose some inputs ...)
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Statistical Database Privacy is not ...

 Access Control:
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Statistical Database Privacy is not ...

Access Control:

- A set of agents want to access a set of resources (could be files
or records in a database)

- Access control rules specify who is allowed to access (or not
access) certain resources.

- ‘Not access’ usually means no information must be disclosed

Statistical Database:

- A single database and a single agent

- Want to release aggregate statistics about a set of records
without allowing access to individual records
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Privacy Problems

* In todays cloud context a number of privacy problems arise:
— Encryption when communicating data across a unsecure channel

— Secure Multiparty Computation when different parties want to compute
on a function on their private data without using a centralized third party

— Computing on encrypted data when one wants to use an unsecure cloud
for computation

— Access control when different users own different parts of the data

e Statistical Database Privacy:
Quantifying (and bounding) the amount of information disclosed

about individual records by the output of a valid computation.

Duke
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Statistical Database Privacy: Key Problems

What is a right definition of privacy?

How to develop mechanisms that
trade-off privacy for utility?
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What is Privacy?

“... the ability to determine for ourselves when, how, and to what
extent information about us is communicated to others ...”
Westin, 1967

Privacy intrusion occurs when new information about an
individual is released. Parent, 1983
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Anonymity

The property that an individual’s record is indistinguishable from
many other individual’s records.

K-Anonymity : popular definition where many = k-1
Used for

— Social network anonymization
— Location privacy
— Anonymous routing
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Privacy is not Anonymity

 Bob’s record is indistinguishable from records of other Cancer
patients
— We can infer Bob has Cancer !

* “New Information” principle

— Privacy is breached if releasing D (or f(D)) allows an adversary to learn
sufficient new information.

— New Information = distance(adversary’s prior belief,
adversary’s posterior belief after seeing D)

— New Information can’t be 0 if the output D or f(D) should be useful.
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Privacy Definitions

* Many privacy definitions
— L-diversity, T-closeness, M-invariance, - Differential privacy, Pufferfish, ...
* Definitions differs in
— What information is considered sensitive
» Specific attribute (disease) vs all possible properties of an individual

— What is the adversary’s prior

e All values are equally likely vs Adversary knows everything about all but one
individuals

— How is new information measured

* |Information theoretic measures
* Pointwise absolute distance
* Pointwise relative distance
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No Free Lunch

Why can’t we have a single definition for privacy?

— For every adversarial prior and every property about an individual, new
information is bounded by some constant.

No Free Lunch Theorem: For every algorithm that outputs a D
with even a sliver of utility, there is some adversary with a prior
such that privacy is not guaranteed.
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Algorithms for Privacy

e Basic Building Blocks
— Generalization or coarsening of attributes
— Suppression of outliers
— Perturbation
— Adding noise
— Sampling
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Algorithms for Privacy

Build complex algorithms by piecing together building blocks.

But, each building block leads to some information disclosure.
And, information disclosure may not add up linearly.

— If Al releases the fact that Bob’s salary is <= 50,000, while A2 releases the
fact that Bob’s salary is >= 50,000; then we know Bob’s salary is exactly

50,000.
— Composition of Privacy

Algorithms may be reverse-engineered.
— If algorithm perturbs x by adding 1, then x can be reconstructed.

Duke
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Algorithms for Privacy

Anonymous/Private Data Publishing
— Medical/Census Data, Search Logs, Social Networks, Location GPS traces

Answering Statistical Counting Queries

— Number of students enrolled in this class categorized by gender,
nationality

— Data Cubes (database), Marginals (statistics)

Social Network Analysis

— Measures of centrality (what is the degree distribution? How many
triangles?)

Streaming Algorithms
— Continuously monitor number of cars crossing a toll booth.
— Location Privacy, Health ...
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Algorithms for Privacy

Game Theory
— Can | participate in an auction without the output of the auction revealing
my private utility function?
— Modern advertising is based on auction design.
— Auctions and Mechanism Design

Machine Learning
— Regress disease and gender/location/age
— Inside tip: Big open area. Much theory — doesn’t work in practice

Recommendations
— Think netflix, amazon ...

Advertising
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Course QOutline

http://www.cs.duke.edu/courses/fall13/compsci590.3/

Theory/Algorithms (Lectures 1-18)
Applications (Lectures 19-26)
Project Presentations (Lecture 27)
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RANDOMIZED RESPONSE
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Case Study: Census Data Collection

N respondents asked a sensitive “yes/no” question.
Surveyor wants to compute fraction m who answer “yes”.
Respondents don’t trust the surveyor.

What should the respondents do?

Duke
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Randomized Response

* Flip acoin
— heads with probability p, and
— tails with probability 1-p (p > 7%)

 Answer question according to the following table:

_ True Answer =Yes | True Answer = No

Heads Yes No

Tails No Yes
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Utility Analysis

11 True fraction of respondents answering “yes”

* p: Probability coin falls heads --“

Heads Yes

* Yi=1, iftheit respondent says “yes”  Tails No ves

=0, if the it respondent says “no”

P(Yi = 1) = (True answer = yes AND coin = heads) OR
(True answer = no AND coin = tails)

=11p + (1-1)(1-p) = Pyes
P(Yi = 0) = (1-p) + (1-n)p = p,,,
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Utility Analysis

Suppose nl out of N people replied “yes”, and rest said “no”
What is the best estimate for it ?

Likelihood: L ="C_, pyesnl pno(n-nl)
Most likely value of m: (by setting dL/dm = 0)

N, = {n1/n—(1-p)}/(2p-1)
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Privacy

* Adversary’s prior belief: P(Bob’s true answer is“yes”) =6

* Suppose Bob answers “yes”.
P(Bob’s true answer is “yes” | Bob says “yes”)
= P(Bob says “yes” AND Bob’s true answer is “yes”) / P(Bob says yes)

= P(Bob says “yes” | Bob’s true answer is “yes”)P(Bob’s true answer is “yes”)
P(Bob says “yes” | Bob’s true answer is “yes”)P(Bob’s true answer is “yes”)
+ P(Bob says “yes” | Bob’s true answer is “no”)P(Bob’s true answer is “no”

=pB/pd +(1-p)(1-6) < p/(1-p) O
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Privacy

* Adversary’s prior belief:
P(Bob’s true answer is“yes”) =0

e Suppose Bob answers “yes”.
Adversary’s posterior belief:

P(Bob’s true answer is “yes” | Bob says “yes”) £ p/(1-p) ©

Adversary’s posterior belief is always bounded by p/1-p times the
adversary’s prior belief (irrespective of what the prior is)
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Privacy vs Utility tradeoff

* When p =1 (return truthful answer)
— p/1-p = infinity : no privacy
— m,_, = nl/n =true answer

e When p =% (return random answer)
— p/1-p = 1: perfect privacy
— We cannot estimate nr, _, since the answers are independent of the input.
— Pyes=np + (1-nt)(1-p) =%(n+1—-m)=%=Pno
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Next Class

* Attacks on naively anonymized data
— Netflix recommendations
— Social networks
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