Accuracy Limits on Private Query Answering

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Outline

- Baseline for Privacy: Blatant Non-Privacy
- Exponential Time Adversaries
- Polynomial Time Adversaries
- Feasibility result

Query Answering

Model

- Database of bits: $d \in \{0,1\}^n$
- Queries: Subset sums
 - Consider $q \subseteq [n]$

$$- a_q = \sum_{i \in q} d_i$$

- Perturbed Answer returned by a private algorithm: A(q)
 - Error: $\mathcal{E} = \max_{q} |A(q) a_q|$

Blatant Non-Privacy

Definition 3 (Non-Privacy). A database $\mathcal{D} = (d, \mathcal{A})$ is t(n)-non-private if for every constant $\varepsilon > 0$ there exists a probabilistic Turing Machine \mathcal{M} with time complexity t(n) so that

$$\Pr[\mathcal{M}^{\mathcal{A}}(1^n) \ outputs \ c \ s.t. \ \mathbf{dist}(c,d) < \varepsilon n] \ge 1 - \mathsf{neg}(n) \ .$$

- dist(c,d) = Hamming distance
 = number of positions where databases c and d differ.
- neg(n): $\forall c, \exists n_0, \forall n > n_0 \ neg(n) < 1/n^c$
- Meaning of the definition:
 A database d along with a perturbed access mechanism A is t(n)-non-private if an attacker can "decode" the database with high probability using query-(perturbed) answer pairs in t(n) time.

Outline

- Baseline for Privacy: Blatant Non-Privacy
- Exponential Time Adversaries
- Polynomial Time Adversaries
- Feasibility result

Theorem 2. Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within o(n) perturbation. Then \mathcal{D} is $\exp(n)$ -non-private.

Exponential number of query, answer pairs

[Query Phase]

For all $q \subseteq [n]$: let $\tilde{a}_q \leftarrow \mathcal{A}(q)$.

[Weeding Phase]

For all $c \in \{0,1\}^n$: if $|\sum_{i \in q} c_i - \tilde{a}_q| \leq \mathcal{E}$ for all $q \subseteq [n]$ then output c and halt.

$$\mathcal{E} = o(n)$$

Attack always terminates (why?)

- Algorithm considers all database in the weeding phase.
- Original database d is never weeded out.

$$\mathbf{dist}(d,c) \le 4\mathcal{E} = o(n)$$

Suppose $dist(c,d) > 4\mathcal{E}$.

Let
$$q_0 = \{i \mid d_i = 1, c_i = 0\}$$
, and $q_1 = \{i \mid d_i = 0, c_i = 1\}$

$$|q_0| + |q_1| > 4\varepsilon$$
. Thus, $wlog |q_1| > 2\varepsilon$

$$\sum_{i \in q_1} d_i = 0 \implies A(q_1) < \mathcal{E}$$

$$But, \sum_{i \in q_1} c_i = |q_1| > 2\mathcal{E}$$

$$But, \sum_{i \in q_1} c_i = |q_1| > 2\varepsilon$$

$$\left| \sum_{i \in q_1} c_i - A(q_1) \right| > \varepsilon$$

Database c would not have passed the weeding phase

Theorem 2. Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within o(n) perturbation. Then \mathcal{D} is $\exp(n)$ -non-private.

[Query Phase]

For all $q \subseteq [n]$: let $\tilde{a}_q \leftarrow \mathcal{A}(q)$.

[WEEDING PHASE]

For all $c \in \{0,1\}^n$: if $|\sum_{i \in q} c_i - \tilde{a}_q| \leq \mathcal{E}$ for all $q \subseteq [n]$ then output c and halt.

With an exponential number of queries, an adversary can reconstruct the entire database even if error in each query is o(n)

- What about Θ(n) error?
- Error = n/2
 - Trivial ...
 - Always answer n/2
 - No utility
- Error = n/40
 - Hint: Using the proof of the theorem ...
 - Can reconstruct 9/10 of the database!

Summary of Exponential Adversary

- An adversary who can ask all queries can reconstruct a large fraction of the database with probability 1.
- What if the adversary is only allowed to asked a small set of queries?

Outline

- Baseline for Privacy: Blatant Non-Privacy
- Exponential Time Adversaries
- Polynomial Time Adversaries
- Feasibility Result

Polynomial Time Adversaries

Theorem 3. Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within $o(\sqrt{n})$ perturbation then \mathcal{D} is $\mathbf{poly}(n)$ non-private.

[Query Phase]

Let $t = n(\log n)^2$. For $1 \le j \le t$ choose uniformly at random $q_j \subseteq_R [n]$, and set $\tilde{a}_{q_j} \leftarrow \mathcal{A}(q_j)$.

[Weeding Phase]

Solve the following linear program with unknowns c_1, \ldots, c_n :

$$\tilde{a}_{q_j} - \mathcal{E} \le \sum_{i \in q_j} c_i \le \tilde{a}_{q_j} + \mathcal{E} \quad \text{for } 1 \le j \le t$$

$$0 \le c_i \le 1 \quad \text{for } 1 \le i \le n$$
(1)

[ROUNDING PHASE]

Let $c'_i = 1$ if $c_i > 1/2$ and $c'_i = 0$ otherwise. Output c'.

Polynomial Time Adversaries

Theorem 3. Let $\mathcal{D} = (d, \mathcal{A})$ be a database where \mathcal{A} is within $o(\sqrt{n})$ perturbation then \mathcal{D} is $\mathbf{poly}(n)$ non-private.

[Query Phase]

Let $t = n(\log n)^2$. For $1 \le j \le t$ choose uniformly at random $q_j \subseteq_R [n]$, and set $\tilde{a}_{q_j} \leftarrow \mathcal{A}(q_j)$.

[Weeding Phase]

Solve the following linear program with unknowns c_1, \ldots, c_n :

$$\tilde{a}_{q_j} - \mathcal{E} \le \sum_{i \in q_j} c_i \le \tilde{a}_{q_j} + \mathcal{E} \quad \text{for } 1 \le j \le t$$

$$0 \le c_i \le 1 \quad \text{for } 1 \le i \le n$$
(1)

[ROUNDING PHASE]

Let $c'_i = 1$ if $c_i > 1/2$ and $c'_i = 0$ otherwise. Output c'.

With n log^2 n queries, an adversary can reconstruct the entire database even if error in each query is $o(\sqrt{n})$

Duke

Summary of negative results

 Attackers can ask multiple questions to the database to learn sensitive information, even when each query answer is perturbed

General result

- Perturbation need not be independent for each query (no assumption on how noise is infused)
- Subset sum queries are quite general. Just use a random set of queries ...
- Both exponential time and polynomial time attacks
- Need to think of privacy as a budget-constrained problem
 - Given a perturbation level, there is an upper bound on the number of queries that can be answered.
 - Once the limit is reached, no more queries can be answered

Outline

- Baseline for Privacy: Blatant Non-Privacy
- Exponential Time Adversaries
- Polynomial Time Adversaries
- Feasibility Result

Tightness of the o(√n) bound

 There exists a mechanism that is not blatant non-private, and which can answer polylog(T(n)) queries with √T(n) noise per query.

Not "Blatant non-private"

- Suppose database is drawn uniformly at random from {0,1}ⁿ.
- Consider 2 Turing machines with time complexity T(n)
 - M^A₁ outputs pairs of queries and perturbed answers using A, and an index i
 - M₂ takes index i and all the other values in d (d⁻ⁱ) and outputs d_i.
- We have $(T(n), \delta)$ -privacy if:

$$\Pr\left[\begin{array}{c} \mathcal{M}_{1}^{\mathcal{A}}(1^{n}) \text{ outputs } (i, view) ; \\ \mathcal{M}_{2}(view, d^{-i}) \text{ outputs } d_{i} \end{array}\right] < \frac{1}{2} + \delta$$

... a precursor to differential privacy (next class)

Feasibility Result

Theorem 5. Let $\mathcal{T}(n) > polylog(n)$, and let $\delta > 0$. Let \mathcal{DB} be the uniform distribution over $\{0,1\}^n$, and $d \in_R \mathcal{DB}$. There exists a $\tilde{O}(\sqrt{T(n)})$ -perturbation algorithm \mathcal{A} such that $\mathcal{D} = (d,\mathcal{A})$ is $(\mathcal{T}(n),\delta)$ -private.

- 1. Let $a_q = \sum_{i \in q} d_i$.
- **2.** Generate a perturbation value: Let $(e_1, \ldots, e_R) \in_R \{0, 1\}^R$ and $\mathcal{E} \leftarrow \sum_{i=1}^R e_i R/2$.
- **3.** Return $a_q + \mathcal{E}$.

• A is a polylog($\sqrt{T(n)}$)-perturbation mechanism

Chernoff Bounds: X1, ..., Xn independent random vars $Xi \in [0,1], E(Xi) = p, then$

$$\Pr[X1 + \dots + Xn > np + x] < e^{-\frac{x^2}{2np(1-p)}}$$

$$\Pr[|\mathcal{E}| > \log^2 n\sqrt{R}] < 2e^{-\frac{\log^4 n \cdot R}{R/2}} < neg(n)$$

To Show:

Probability that ${
m d} i=1$ given query answer pairs, and all the $p_\ell=\Pr[d_i=1|a_1,\ldots,a_\ell]<rac{1}{2}+\delta$ bits other than di is bounded

$$p_\ell = \Pr[d_i = 1 | a_1, \ldots, a_\ell] < rac{1}{2} + \delta$$

$$p_{\ell} = p_{\ell-1} \cdot \frac{\Pr[a_{\ell}|d_i = 1] \cdot \Pr[a_1, \dots, a_{\ell-1}]}{\Pr[a_1, \dots, a_{\ell}]}$$

$$1 - p_{\ell} = (1 - p_{\ell-1}) \cdot \frac{\Pr[a_{\ell}|d_i = 0] \cdot \Pr[a_1, \dots, a_{\ell-1}]}{\Pr[a_1, \dots, a_{\ell}]}$$

• Adversary's confidence in di = 1 after L queries ...

$$\operatorname{conf}_{\ell} \stackrel{def}{=} \log \left(p_{\ell} / (1 - p_{\ell}) \right)$$

- Adversary's confidence starts at 0, and $conf_l = conf_{l-1}$, when $i \notin q_l$
- For privacy, we want to show that

$$|\mathrm{conf}_{\ell}| < \delta' = \log\left(\frac{1/2+\delta}{1/2-\delta}\right)$$
 for all $0 < \ell \le t$

 Confidence depends on all the prior queries. Maybe hard to compute.

$$step_{\ell} \stackrel{def}{=} conf_{\ell} - conf_{\ell-1} = log\left(\frac{\Pr[a_{\ell}|d_i=1]}{\Pr[a_{\ell}|d_i=0]}\right)$$

- The sequence $0 = \text{conf}_1$, conf_2 , ..., conf_t defines a random walk on a line, defined by random variable step_i.
- We are done if we show that the random walk needs more than t steps to reach δ' ...

• Consider two cases when $d_i = 1$ and $d_i = 0$. To get answer a_i in both cases requires different noises k and k+1.

$$\operatorname{step}_{l} = \frac{\Pr[a_{l}|d_{i}=1]}{\Pr[a_{l}|d_{i}=0]} = \frac{\Pr[\mathcal{E}=k]}{\Pr[\mathcal{E}=k+1]}$$

$$\Pr\left[\text{step}_{l} = \log \frac{k+1}{R-k}\right] = \binom{R}{k} / \binom{R}{2^{k}}$$

 We can show expectation and absolute value of each step is small.

$$E\left[\sum_{l} \operatorname{step}_{l}\right] \leq O(\frac{1}{\log^{\mu} n})$$

$$|\text{step}_l| \le O(\log^2 n / \sqrt{R})$$

Proof can be completed using the Hoeffdings inequality

If
$$X1, X2, ..., Xn$$
 are independent random variables $s.t. \Pr[|Xi| \le a] = 1.$

Let
$$S = X1 + X2 + \cdots + Xn$$

$$\Pr[S - E(S) > t] < e^{-\frac{t^2}{2na^2}}$$

The step random variables satisfy all these conditions.

Summary

- Showing feasibility requires defining privacy.
- Privacy defined in terms of adversary's posterior knowledge
- Algorithm uses additive randomization and maintains no state about previous queries
 - No need for query auditing
 - However there is a bound on the number of queries allowable.
- Precursor to differential privacy

Next class

Differential Privacy

References:

• Dinur, Nissim, "Revealing information while preserving privacy", PODS 2003

