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Model

» Database of bits: d € {0,1}"

* Queries: Subset sums

— Consider ¢ & [n]

lEQ

* Perturbed Answer returned by a private algorithm: A(q)

— Error: € = mc?x |A(q) — a4
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Blatant Non-Privacy

Definition 3 (Non-Privacy). A database D = (d,.A) is t(n)-non-private if for every constant
e > 0 there ezists a probabilistic Turing Machine M with time complezity t(n) so that

Pr[MA(1™) outputs ¢ s.t. dist(c,d) < en] > 1 — neg(n) .

dist(c,d) = Hamming distance
= number of positions where databases c and d differ.

neg(n): Vc,3ang, Vn >ny neg(n) < 1/n¢

Meaning of the definition:

A database d along with a perturbed access mechanism A is t(n)-non-private if
an attacker can “decode” the database with high probability using query-
(perturbed) answer pairs in t(n) time.
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Exponential Time Adversary

Theorem 2. Let D = (d,.A) be a database where A is within o(n) perturbation. Then D is exp(n)-

non-private.

Exponential number of query, answer pairs

For all ¢ C [n]: let a; — A(q).

[WEEDING PHASE]
For all c € {0,1}": if |37, i — @q| < Séor all ¢ C [n] then output ¢ and halt.

.

& =o(n)

Duke
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Exponential Time Adversary

Attack always terminates (why?)

» Algorithm considers all database in the weeding phase.
* Original database d is never weeded out.
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Exponential Time Adversary

dist(d, c) < 4€ = o(n)

Suppose dist(c,d) > 4E.
Letqy,=1{i|d; =1,¢c; =0},and q; ={i|d; = 0,c; = 1}

lgo| + 1g1| > 4E. Thus,wlog |q,| > 2E

—

z d,=0 = A(qy) < €
e > €

- ‘Z i — Aqy)
l€q,

Database ¢ would not have
passed the weeding phase
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Exponential Time Adversary

Theorem 2. Let D = (d,.A) be a database where A is within o(n) perturbation. Then D is exp(n)-

non-private.

[QUERY PHASE]
For all ¢ C [n]: let a; — A(q).

[WEEDING PHASE]|
For all ¢ € {0,1}": if | 37, ¢i — @q| < € for all g C [n] then output ¢ and halt.

With an exponential number of queries, an adversary can
reconstruct the entire database even if error in each query is o(n)

Duke
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Exponential Time Adversary

 What about ©(n) error?

e Error=n/2
— Trivial ...
— Always answer n/2
— No utility

 Error=n/40
— Hint: Using the proof of the theorem ...
— Can reconstruct 9/10 of the database!
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Summary of Exponential Adversary

 An adversary who can ask all queries can reconstruct a large
fraction of the database with probability 1.

 What if the adversary is only allowed to asked a small set of
gueries?
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Polynomial Time Adversaries

Theorem 3. Let D = (d,.A) be a database where A is within o(y/n) perturbation then D is poly(n)-
non-private.

[QUERY PHASE]
Let t = n(logn)?. For 1 < j <t choose uniformly at random ¢; Cg [n], and set dg; — A(g;).

[WEEDING PHASE]

Solve the following linear program with unknowns cy,. .., cy:
&qj—é’gzieqjcigfijqLE for1<j5<t (1)
0<¢ <1 forl1 <i<mn

[ROUNDING PHASE]
Let ¢; =1 if ¢; > 1/2 and ¢, = 0 otherwise. Output ¢’

Duke
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Polynomial Time Adversaries

Theorem 3. Let D = (d,.A) be a database where A is within o(y/n) perturbation then D is poly(n)-
non-private.

[QUERY PHASE]
Let t = n(logn)?. For 1 < j <t choose uniformly at random ¢; Cg [n], and set dg; — A(g;).

[WEEDING PHASE]

Solve the following linear program with unknowns cy,. .., cy:
&qj—ESZieqjciS&qquS for1<j5<t (1)
0<¢ <1 forl1 <i<mn

[ROUNDING PHASE]
Let ¢; =1 if ¢; > 1/2 and ¢, = 0 otherwise. Output ¢’

With n log?n queries, an adversary can reconstruct the entire
database even if error in each query is o(Vn)
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Summary of negative results

* Attackers can ask multiple questions to the database to learn
sensitive information, even when each query answer is perturbed

* General result
— Perturbation need not be independent for each query (no assumption on
how noise is infused)
— Subset sum queries are quite general. Just use a random set of queries ...

— Both exponential time and polynomial time attacks

* Need to think of privacy as a budget-constrained problem
— Given a perturbation level, there is an upper bound on the number of
queries that can be answered.
— Once the limit is reached, no more queries can be answered
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Lecture 7 : 590.03 Fall 13
UNIVERSITY



Outline

Baseline for Privacy: Blatant Non-Privacy
Exponential Time Adversaries
Polynomial Time Adversaries

Feasibility Result

Lecture 7 : 590.03 Fall 13 18 Duke

UNIVYERSITY



Tightness of the o(Vn) bound

* There exists a mechanism that is not blatant non-private, and
which can answer polylog(T(n)) queries with VT(n) noise per

query.
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Not “Blatant non-private”

Suppose database is drawn uniformly at random from {0,1}".

Consider 2 Turing machines with time complexity T(n)
— MA, outputs pairs of queries and perturbed answers using A, and an index i
— M, takes index i and all the other values in d (d”) and outputs d..

We have (T(n), 6)-privacy if:

Ar1n . .
Py M{(1™) outputs (¢, view) ; ] < 1

M (view, d™?) outputs d; 2 +90

... a precursor to differential privacy (next class) D I
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Feasibility Result

Theorem 5. Let 7(n) > polylog(n), and let 6 > 0. Let DB be the uniform distribution over
{0,1}", and d €g DB. There exists a O(y/7 (n))-perturbation algorithm A such that D = (d,.A) is
(7 (n),d)-private.

1. Let Qg = Z dz

1€q
2. Generate a perturbation value: Let (e1,...,eg) €r {0,1} and £ — 32, e; — R/2.

3. Return a4 + €.
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Proof Highlights

« Ais a polylog(¥'T(n))-perturbation mechanism

Chernoff Bounds: X1, ..., Xn independent random vars
Xi € [0,1], E(Xi) = p, then

x2

PriX1+ -+ Xn>np+x]| < e 2np(1-D)

_log*n'R
Pr[|€] > logZnVR] <2e RZ < neg(n)
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Proof Highlights

To Show:

Probability that di = 1 given 1
query answer pairs, and all the = P¢= Prid; = 1la,...,ag<5+9
bits other than di is bounded

—

—

. Pr[ag|dz- == ].] . Pr[al, “o ,ag_l]
Pr[al, coe ,ag]

Pt =pe

Pr[ag|d; = 0] - Prlaq, ..., ap_1]
Prlay,..., ay]

1 —pe=(1—pe—1)-
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Proof Highlights

* Adversary’s confidence in di = 1 after L queries ...

de
confy 24 log (pe/(1 — pe))

* Adversary’s confidence starts at 0, and conf; = conf;_;,wheni & g

* For privacy, we want to show that

lconfy| < &' = log (%) forall0 <4<t
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Proof Highlights

Confidence depends on all the prior queries. Maybe hard to
compute.

Prlas|d; = 1])

def
tepy = fg —confy_; =1
SULEPy coniy — CONiy_—1q og (Pr[addi — 0]

The sequence 0 = conf,, conf,, ..., conf, defines a random walk
on a line, defined by random variable step..

We are done if we show that the random walk needs more
than t steps to reach ¢’ ...
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Proof Highlights

* Consider two cases when d; = 1 and d; = 0. To get answer a, in
both cases requires different noises k and k+1.

tor — Pra;|d; =1]  Pr[€=K]
SPL T brla,ld; = 0] Pr[€ = k + 1]

k+1 _(},E)/Zk

R—kl

Pr [stepl = log
 We can show expectation and absolute value of each step is

small. ]
1
E _ E lstepl] < 0( /log“n)

step;| < 0(log? n /VR)

Duke
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Proof Highlights

* Proof can be completed using the Hoeffdings inequality

If X1,X2,...,Xn are independent random variables

LetS =X1+X2+--+Xn

s.t.Pr[|Xi|<a]=1

t2

Pr[S—E(S) >t] < e 2na?

* The step random variables satisfy all these conditions.
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Summary

Showing feasibility requires defining privacy.
Privacy defined in terms of adversary’s posterior knowledge

Algorithm uses additive randomization and maintains no state
about previous queries

— No need for query auditing

— However there is a bound on the number of queries allowable.

Precursor to differential privacy
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Next class

* Differential Privacy

References:
* Dinur, Nissim, “Revealing information while preserving privacy”, PODS 2003
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