
590.7 Network Security
Lecture 2: Goals and Challenges
of Security Engineering

Xiaowei Yang

Roadmap

� What is security?
� Examples of secure systems
�  Security properties
� Challenges

What is security?

�  System correctness
◦  If user supplies expected input, system

generates desired output

�  Security
◦  If attacker supplies unexpected input, system

does not fail in certain ways

What is security?

� System correctness
◦ Good input ⇒ Good output

� Security
◦ Bad input ⇒ Bad output

How to analyze a security system

1.  Policy
◦  What you are supposed to achieve

2.  Mechanism
◦  The techniques to meet the policy

requirements
◦  Ex: ciphers, access controls

3.  Assurance (security guarantees)
◦  The amount of reliance one can place on each

mechanism
4.  Incentives
◦  Motive that good guys do their jobs right and

bad guys defeat your policy

Policy Incentives

Mechanism Assurance

Ex: analyzing the 911 attack

� A failure of policy not mechanism

� Policy changed later
� Assurance is poor

Examples of security systems

� Home
� Hospital
� Bank

Home

�  Home banking
�  Remote car keys
�  Mobile phones
�  Wireless routers

Hospital

�  Keeping patient records private
�  Anonymizing patient records
�  Web-based access to patient records

Bank

�  Bookkeeping a customer’s transactions
�  ATM
�  Bank websites
�  Messaging systems
�  Bank offices

Security Properties
� Confidentiality
◦  Information about system or its users

cannot be learned by an attacker
�  Integrity
◦  Protected information not modified by

attackers
� Availability
◦ Actions by an attacker do not prevent

users from having access to use of the
system

System

Attacker Alice

General picture

�  Security is about
◦  Honest user (e.g., Alice, Bob, …)
◦  Dishonest Attacker
◦  How the Attacker
�  Disrupts honest user’s use of the system (Integrity,

Availability)
�  Learns information intended for Alice only (Confidentiality)

Network Attacker

Intercepts and
controls network
communication

Alice

System

Network security

Web Attacker

Sets up malicious
site visited by

victim; no control
of network

Alice

System

Web security

OS Attacker

Controls malicious
files and

applications

Alice

Operating system security

System

Attacker Alice

Confidentiality: Attacker does not learn Alice’s secrets

Integrity: Attacker does not undetectably corrupt system’s function for Alice

Availability: Attacker does not keep system from being useful to Alice

Challenges

� Buggy code
�  Inexperienced users
� Poorly designed protocols
�  Insider attacks
◦ What can you trust?

Buggy code

Check Nbugs Rule checked

Block 206 + 87 To avoid deadlock, do not call blocking functions with interrupts disabled or a spinlock held.
Null 124 + 267 Check potentially NULL pointers returned from routines.
Var 33 + 69 Do not allocate large stack variables (> 1K) on the fixed-size kernel stack.
Inull 69 Do not make inconsistent assumptions about whether a pointer is NULL.
Range 54 Always check bounds of array indices and loop bounds derived from user data.
Lock 26 Release acquired locks; do not double-acquire locks.
Intr 27 Restore disabled interrupts.
Free 17 Do not use freed memory.
Float 10 + 15 Do not use floating point in the kernel.
Real 10 + 1 Do not leak memory by updating pointers with potentially NULL realloc return values.
Param 7 Do not dereference user pointers.
Size 3 Allocate enough memory to hold the type for which you are allocating.

Table 1: The twelve checkers used in this paper. If the checker has few false positives, we report the number of bugs
as inspected + projected. In total there are 1025 bugs. The top three are the primary projected checkers: we assume
all potential errors reported by these checkers are real bugs. The middle set of checkers are used throughout the
paper, but we only count manually inspected errors from 2.4.1 as real bugs. The bottom set of checkers are used only
occasionally throughout the paper.

0

50

100

150

200

250

01/94 01/95 01/96 01/97 01/98 01/99 01/00 01/01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Nu
mb

er
 of

 B
ug

s

ML
OC

Total Number of Projected Bugs Through Time

 1.0
 1.2.0

 2.1.0

 2.1.60

 2.3.0

 2.3.40

 2.3.99-pre6
 2.4.1Code Base Growth

Block-projected
Null-projected
Var-projected
Float-projected
Real-projected

Figure 2: The absolute number of projected errors in
this study. We believe 1000 is a conservative estimate
of the number of unique bugs we have. The errors found
by the three projected checkers are usually a function of
code size, though the block checker has an unusual dip
from version 2.1.60 to 2.3.0. The number of projected
errors goes down at 2.3.40 for Block and Null because
about 30 Block errors and 40 Null errors were fixed in
that version.

Block, and Null. The Var checker produces almost
no false positives, Block less than three percent, and
Null less than ten percent. While the projected results
have more noise, they are fairly representative of the
inspected results.

Raw error counts alone cannot answer questions re-
lating to error rates, which require some notion of the
number of times a programmer has correctly obeyed a
given restriction. Thus, we also use notes, which are
emitted whenever an extension encounters an event that
it checks. For example, the Null checker notes every call
to kmalloc or other routines that can return NULL; the
Block checker the number of critical sections it encoun-
ters, the Free checker the number of deallocation calls it
sees, etc. Notes are the number of places a programmer

could make a mistake relevant to a given check. Thus,
for a given checker, dividing the number of errors by the
number of notes gives the relative error rate.

Figure 2 graphs all the projected errors we use. We
have approximately 1000 unique bugs in total, counting
both projected and inspected errors. There are several
features to note about the graph:

• The number of errors for the unsupervised check-
ers generally rises over time, especially after the
release of version 2.3.0.

• The Block checker accounts for an unexpectedly
large number of the errors. Many developers seem
unaware of the restriction that it checks.

• The Null checker also accounts for a large num-
ber of errors. This is caused by careless slips, ig-
norance of exactly which functions might return
NULL, and the ubiquitous use of NULL pointers to
indicate special cases.

2.4 Scaling
A key feature of our experimental infrastructure is that
it is almost completely automatic. The main manual
parts are actually writing checkers and, for inspected
bugs, auditing their output for a single run. Running
a checker over all versions of Linux requires typing a
single command. These results are then automatically
entered in a database and cross-correlated with previous
runs. A common pattern is inspecting errors from the
most recent release and then having the system auto-
matically calculate over all releases how long each error
lasts, where it dies, how many checks were done, and
the relative error rate. Further, with the exception of
some axis labeling, all the graphs in this paper are gen-
erated from scripts. Thus, adding new results and even
new checkers or operating systems requires very little
work.

2.5 Caveats
There are several caveats to keep in mind with our re-
sults. First, while we have approximately a thousand
errors, they were all found through automatic compiler

Market place for vulnerabilities
Option 1: bug bounty programs
� Google Vulnerability Reward Program:
3K $
� Mozilla Bug Bounty program: 500$
� Pwn2Own competition: 15K $

Option 2:
� Zero Day Initiatives, iDefense: 2K –
25K $

Market place for vulnerabilities

�  Option 3: black market

Marketplace for owned machines

Pay-per-install (PPI) services
• Own victim’s machine
• Download and install client’s code
• Charge client

Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesec11.pdf)

spam
bot keylogger

clients

PPI service

Victims

Cost:
 US 100-180$ / 1000 machines
 Asia 7-8$ / 1000 machines

Why own machines?
 Steal IP addresses

Use the infected machine’s IP address
for:

� Spam (e.g. the storm botnet)
 Spamalytics: 1:12M pharma spams leads to purchase

 1:260K greeting card spams leads to
infection

� Denial of Service:

◦  Services: 1 hour (20$), 24 hours (100$)

� Click fraud (e.g. Clickbot.a)

Why own machines:
 Steal user credentials

keylog for banking passwords, web
passwords, gaming pwds

Example: SilentBanker (2007)

Bank

Malware injects
Javascript

Bank sends login page
needed to log in

When user submits
information, also sent
to attacker

User requests login page

Similar mechanism used
by Zeus botnet

Challenges

� Buggy code
� Gullible users
� Poorly designed protocols
�  Insider attacks
◦ What can you trust?

Inexperienced users

� Phishing attacks
◦  “I am stuck in London… lost my wallet…”

� Poor choice of Passwords

� Unchanged default username/password

Poorly designed protocols

�  telnet
◦  Send plain passwords over the network

� TCP
◦  Fixed initial syn numbers

� BGP
◦ Unauthenticated messages

Insider attacks

�  Hidden trap door in Linux (nov 2003)

◦ Allows attacker to take over a computer
◦  Practically undetectable change (uncovered

via CVS logs)

What can you trust?

� What code can we trust?
◦ Consider "login" or "su" in Unix
◦  Is RedHat binary reliable?
◦  Does it send your passwd to someone?

� Can't trust binary so check source,
recompile
◦  Read source code or write your own
◦  Does this solve problem?

Compiler backdoor

� This is the basis of Thompson's attack
◦ Compiler looks for source code that looks

like login program
◦  If found, insert login backdoor (allow

special user to log in)

� How do we solve this?
◦  Inspect the compiler source

C compiler is written in C
� Change compiler source S

 compiler(S) {
 if (match(S, "login-pattern")) {
 compile (login-backdoor)
 return
 }
 if (match(S, "compiler-pattern")) {
 compile (compiler-backdoor)
 return
 }
 /* compile as usual */
 }

Avoid detection
�  Compile this compiler and delete backdoor tests

from source
◦  Someone can compile standard compiler source to get new

compiler, then compile login, and get login with backdoor

�  Simplest approach will only work once
◦  Compiling the compiler twice might lose the backdoor
◦  But can making code for compiler backdoor output itself

�  (Can you write a program that prints itself? Recursion thm)

�  Read Thompson's article
◦  Short, but requires thought

Self-reproducing code example
�  Code that prints itself

�  public class Quine

�  {

�  public static void main(String[] args)

�  {

�  char q = 34; // Quotation mark character

�  String[] l = { // Array of source code

�  "public class Quine",

�  "{",

�  " public static void main(String[] args)",

�  " {",

�  " char q = 34; // Quotation mark character",

�  " String[] l = { // Array of source code",

�  " ",

�  " };",

�  " for(int i = 0; i < 6; i++) // Print opening code",

�  " System.out.println(l[i]);",

�  " for(int i = 0; i < l.length; i++) // Print string array",

�  " System.out.println(l[6] + q + l[i] + q + ',');",

�  " for(int i = 7; i < l.length; i++) // Print this code",

�  " System.out.println(l[i]);",

�  " }",

�  "}",

�  };

�  for(int i = 0; i < 6; i++) // Print opening code

�  System.out.println(l[i]);

�  for(int i = 0; i < l.length; i++) // Print string array

�  System.out.println(l[6] + q + l[i] + q + ',');

�  for(int i = 7; i < l.length; i++) // Print this code

�  System.out.println(l[i]);

�  }

�  }

