590.7 Network Security
Lecture 2: Goals and Challenges
of Security Engineering

Xiaowei Yang

Roadmap

* What is security?

e Examples of secure systems
 Security properties

» Challenges

What is security?

e System correctness

o |f user supplies expected input, system
generates desired output

* Security

o |f attacker supplies unexpected input, system
does not fail in certain ways

What is security?

» System correctness
- Good input = Good output

o Security
- Bad jnput = Bad output

How to analyze a security system

I. Policy

> What you are supposed to achieve

2. Mechanism

> The techniques to meet the policy
requirements

> Ex:ciphers, access controls
3. Assurance (security guarantees)

> The amount of reliance one can place on each
mechanism

4. |Incentives

> Motive that good guys do their jobs right and
bad guys defeat your policy

::3:::3:::3:::3:::\-1..\.3:::3:: 3::1:3:::1

s

M

e e

Ex: analyzing the 91 | attack

e A failure of policy not mechanism

* Policy changed later
e Assurance is poor

Examples of security systems

e Home
* Hospital
e Bank

Home

e Home banking
* Remote car keys
e Mobile phones
* Wireless routers

Hospital

00
HE0

g

l J

» Keeping patient records private
e Anonymizing patient records

* Web-based access to patient records

Bank

* Bookkeeping a customer’s transactions
« ATM

* Bank websites

e Messaging systems

e Bank offices

Security Properties
 Confidentiality

- Information about system or its users
cannot be learned by an attacker

o Integrity

> Protected information not modified by
attackers

» Availability
- Actions by an attacker do not prevent

users from having access to use of the
system

General picture

Alice Attacker

 Security is about
> Honest user (e.g., Alice, Bob, ...)
> Dishonest Attacker

- How the Attacker

Disrupts honest user’ s use of the system (Integrity,
Availability)

Learns information intended for Alice only (Confidentiality)

Network security

Network Attacker

Intercepts and
controls network
communication

Web security

Web Attacker

Sets up malicious
site visited by
victim; no control
of network

Operating system security

OS Attacker

Controls malicious
files and
applications

Alice Attacker

Confidentiality: Attacker does not learn Alice’ s secrets
Integrity: Attacker does not undetectably corrupt system’ s function for Alice
Availability: Attacker does not keep system from being useful to Alice

Challenges

* Buggy code
* Inexperienced users
* Poorly designed protocols

* Insider attacks
> What can you trust!

Buggy code

Total Number of Projected Bugs Through Time

250 mmm——1———m——4—m——r————r—————7———+——1 1.8
—+— Code Base Growth 2.4.1
————— =<----- Block-projected 2.3.9 1.6
------ ~----- Null-projected
200 o «-\ar-projected 2.3.40 1.4
- Float-projected
S Real-projected 1.2
150
y
0.8
100
0.6
50 1 0.4
0.2
0 o)

01/94 01/95 01/96 01/97 01/98 01/99 O1/OO 01/01

Market place for vulnerabilities

Option 1: bug bounty programs

*Google Vulnerability Reward Program:
3K$

*Mozilla Bug Bounty program: 500%
Pwn20wn competition: 15K $

Option 2.
«Zero Day Initiatives, iDefense: 2K —
25K $

Market place for vulnerabilities

« Option 3: black market

Vulnerability/Exploit

Value

Source

“Some exploits”

$200,000 - $250,000

A government official referring to
what “some people” pay [9]

a “real good” exploit over $100,000 Official from SNOsoft research
team [10]

Vista exploit $50,000 Raimund Genes, Trend Micro 8]

“Weaponized exploit” $20,000-830,000 David Maynor, SecureWorks [11]

Marketplace for owned machines

s ™
clients
x \ / p,

Pay-per-install (PPI) services \ /

-Own victim’ s machine

-Download and install client’ s code PPI service
-Charge client
Cost: / \ \

US 100-180%/ 1000 machines

Asia 7-8% / 1000 machines ./ ./ ./

Victims

Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesecl1.pdf)

Why own machines?

Steal |IP addresses
Use the infected machine’ s IP address
for:

Spam (e.g. the storm botnet)

Spa maIYtiCS: 1:12M pharma spams leads to purchase

1:260K greeting card spams leads to
infection

-Denial of Service:
- Services: 1 hour (20%), 24 hours (1009%)
*Click fraud (e.g. Clickbot.a)

Why own machines:
Steal user credentials

keylog for banking passwords, web
passwords, gaming pwds

Example: SilentBanker (2007)
User requests login page rD\Q

p— <€
Malware |n]ec.:ts Bank sends login page \)/
Javascript needed to log in

Bank

When user submits
information, also sent
to attacker

Similar mechanism used
by Zeus botnet

Challenges

* Buggy code
e Gullible users
* Poorly designed protocols

* Insider attacks
> What can you trust!

Inexperienced users

 Phishing attacks

o “l am stuck in London... lost my wallet...”

e Poor choice of Passwords

e Unchanged default username/password

Poorly designed protocols

e telnet

> Send plain passwords over the network

« TCP

> Fixed initial syn numbers

* BGP

> Unauthenticated messages

Insider attacks

» Hidden trap door in Linux (nov 2003)
- Allows attacker to take over a computer

> Practically undetectable change (uncovered
via CVS logs)

What can you trust?

» What code can we trust?
- Consider "login" or "su" in Unix ["%
- Is RedHat binary reliable? aana
> Does it send your passwd to someone?

» Can't trust binary so check source,
recompile

- Read source code or write your own
> Does this solve problem?

Compiler backdoor

» This is the basis of Thompson's attack

- Compiler looks for source code that looks
like login program

- If found, insert login backdoor (allow
special user to log in)

» How do we solve this?
> Inspect the compiler source

C compiler is written in C

» Change compiler source S

compiler(S) {

if (match(S, "login-pattern™)) {
compile (login-backdoor)
return

)

if (match(S, "compiler-pattern™)) {
compile (compiler-backdoor)
return

}

... [* compile as usual */

}

Avoid detection

» Compile this compiler and delete backdoor tests
from source

> Someone can compile standard compiler source to get new
compiler, then compile login, and get login with backdoor

» Simplest approach will only work once

- Compiling the compiler twice might lose the backdoor

> But can making code for compiler backdoor output itself
(Can you write a program that prints itself? Recursion thm)

« Read Thompson's article
- Short, but requires thought

Self-reproducing code example

. Code that prints itself

. public class Quine

. {

. public static void main(String[] args)

. {

o char q=34; // Quotation mark character

. String[] | ={ // Array of source code

o "public class Quine",

o "{",

. " public static void main(String[] args)",

. "

o " char q=34; // Quotation mark character",

. " String[] | ={ // Array of source code",

. "R

. " for(inti=0;i<6;i++) /I Print opening code",
. " System.out.printin(I[i]);",

. " for(inti=0;i<llength;i++) // Print string array",
. " System.out.printin(I[6] + q + I[i] + q + ");",

. " for(inti=7;i<llength;i++) // Print this code",
. " System.out.printin(I[i]);",

. "

o "W,

o %

. for(inti=0;i < 6;i++) /I Print opening code

. System.out.printin(I[i]);

. for(inti= 0;i < Llength;i++) // Print string array

. System.out.printin(I[6] + q + I[i]] +q +");

. for(inti=7;i < llength;i++) // Print this code

. System.out.printin(I[i]);

-)

