
590.05	
 Lecture	
 4:	
 OS	

Security	

Xiaowei	
 Yang	

Previous	
 lecture	

•  Security	
 proper2es	

•  Confiden2ality	

•  Integrity	

•  Availability	

•  Assurance	

•  Authen2ca2on	

•  Anonymous	

•  Tools	
 for	
 security	

•  Security	
 principles	

Today	

•  More	
 security	
 property:	
 Accountability	

•  OS	
 security	

•  File	
 system	
 security	

•  Buffer	
 Overflow	

4

Accountability and Freedom

Butler Lampson
Microsoft

September 26, 2005

5

Real-World Security
•  It’s about risk, locks, and deterrence.
- Risk management: cost of security < expected loss
-  Perfect security costs way too much

-  Locks good enough that bad guys break in rarely
- Bad guys get caught and punished enough to be deterred, so police /

courts must be good enough.
- Can recover from damage at an acceptable cost.

•  Internet security similar, but
little accountability
•  Can’t identify the bad guys, so can’t deter them

6

How Much Security
•  Security is costly—buy only what you need

•  You pay mainly in inconvenience
•  If there’s no punishment, you pay a lot

•  People do behave this way
•  We don’t tell them this—a big mistake

• The best is the enemy of the good
• Perfect security is the worst enemy of real security

•  Feasible security
•  Costs less than the value it protects
•  Simple enough for users to manage
•  Simple enough for vendors to implement

7

Causes of Security Problems
•  Exploitable bugs
•  Bad configuration

•  TCB: Everything that security depends on
 Hardware, software, and configuration

•  Does formal policy say what I mean?
•  Can I understand it? Can I manage it?

•  Why least privilege doesn’t work
•  Too complicated, can’t manage it

The unavoidable price of reliability is simplicity
—Hoare

8

Defensive strategies
•  Locks: Control the bad guys

•  Coarse: Isolate—keep everybody out
•  Medium: Exclude—keep the bad guys out
•  Fine: Restrict—Keep them from doing damage

 Recover—Undo the damage
•  Deterrence: Catch bad guys, punish them

•  Auditing, police, courts or other penalties

9

The Access Control Model

Object

Resource

Reference
monitor

Guard

Do
operation

Request

Principal

Source

Authorization

Audit log"

Authentication

Policy

1. Isolation boundary

2. Access control

3. Policy

1.   Isola(on	
 Boundary	
 to	
 prevent	
 aGacks	
 outside	

access-­‐controlled	
 channels	

2.   Access	
 Control	
 for	
 channel	
 traffic	

3.   Policy	
 management	

10

Isolation

• Attacks on:
•  Program
•  Isolation
•  Policy

Services	
 Boundary	

Creator	

G	

U	

A	

R	

D	

G	

U	

A	

R	

D	

policy	

policy	

Program	

Data	

guard	

Host

•  I	
 am	
 isolated	
 if	
 anything	
 that	
 goes	
 wrong	
 is	
 my	
 fault	

–  	
 	
 Actually,	
 my	
 program’s	
 fault	

Object

Resource

Reference
monitor
Guard

Do
operation

Request

Principal

Source

Authorizatio
n

Audit log"

Authentication

Policy

1. Isolation boundary

2. Access control

3.
Policy

11

Access Control Mechanisms:
The Gold Standard
• Authenticate principals: Who made a request
- Mainly people, but also channels, servers, programs

(encryption implements channels, so key is a principal)

• Authorize access: Who is trusted with a resource
- Group principals or resources, to simplify management
-  Can define by a property, e.g. “type-safe” or “safe for scripting”

• Audit: Who did what when?

•  Lock = Authenticate + Authorize
•  Deter = Authenticate + Audit

Object

Resource

Reference
monitor
Guard

Do
operation

Request

Principal

Source

Authorization

Audit log"

Authentication

Policy

1. Isolation boundary

2. Access control

3.
Policy

12

Making Isolation Work
•  Isolation is imperfect: Can’t get rid of bugs

•  TCB = 10-50 M lines of code
•  Customers want features more than correctness

•  Instead, don’t tickle them.
•  How? Reject bad inputs

•  Code: don’t run or restrict severely
•  Communication: reject or restrict severely

•  Especially web sites
•  Data: don’t send; don’t accept if complex

13

Accountability
•  Can’t identify bad guys, so can’t deter them
•  Fix? End nodes enforce accountability

•  Refuse messages that aren’t accountable enough
•  or strongly isolate those messages

•  Senders are accountable if you can punish them
• All trust is local

• Need an ecosystem for
• Senders becoming accountable
• Receivers demanding accountability
• Third party intermediaries

• To stop DDOS attacks, ISPs must play

14

Enforcing Accountability
•  Not being accountable enough means end nodes will reject

inputs
•  Application execution is restricted or prohibited
•  Communication is restricted or prohibited
•  Information is not shared or accepted
•  Access to devices or networks is restricted or prohibited

15

For Accountability To Work
•  Senders must be able to make themselves accountable

•  This means pledging something of value
•  Friendship
•  Reputation
•  Money
•  …

•  Receivers must be able to check accountability
•  Specify what is accountable enough
•  Verify sender’s evidence of accountability

16

Accountability vs. Access Control
•  “In principle” there is no difference
 but

•  Accountability is about punishment, not locks
•  Hence audit is critical

•  Accountability is very coarse-grained

17

The Accountability Ecosystem
•  Identity, reputation, and indirection services
•  Mechanisms to establish trust relationships

•  Person to person and person to organization
•  A flexible, simple user model for identity
•  Stronger user authentication

•  Smart card, cell phone, biometrics
•  Application identity: signing, reputation

18

Accountable Internet Access
•  Just enough to block DDoS attacks
• Need ISPs to play. Why should they?

•  Servers demand it; clients don’t get locked out
•  Regulation?

• A server asks its ISP to block some IP addresses
•  ISPs propagate such requests to peers or clients

•  Probably must be based on IP address
•  Perhaps some signing scheme to traverse unreliable

intermediaries?
• High priority packets can get through

19

•  Partition world into two parts:
•  Green Safer/accountable
•  Red Less safe/unaccountable

•  Two aspects, mostly orthogonal
•  User Experience
•  Isolation mechanism

•  Separate hardware with air gap
•  VM
•  Process isolation

Accountability vs. Freedom

20

Without R|G: Today
	

	

	

N attacks/yr

Less	

valuable	

	
 assets	

More	

valuable	

	
 assets	

My Computer

m attacks/yr

Total: N+m attacks/yr on all assets

(N >> m)

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

En((es	

-­‐	
 Programs	

-­‐	
 Network	
 hosts	

-­‐	
 Administrators	

21

With R|G

Less	

valuable	

	
 assets	

 My Red Computer

N attacks/yr on less
valuable assets

More	

valuable	

	
 assets	

More	

valuable	

	
 assets	

My Green Computer

m attacks/yr on more
valuable assets

N attacks/yr m attacks/yr (N >> m)

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

En((es	

-­‐	
 Programs	

-­‐	
 Network	
 hosts	

-­‐	
 Administrators	

22

Must Get Configuration Right

Less	

valuable	

	
 assets	

 My Red Computer

More	

valuable	

	
 assets	

More	

valuable	

	
 assets	

My Green Computer

Valuable	

Asset	

Less trustworthy
Less accountable

entities

More trustworthy
More accountable

entities

Hos2le	

agent	

•  Keep	
 valuable	
 stuff	
 out	
 of	
 red	

•  Keep	
 hos2le	
 agents	
 out	
 of	
 green	

23

Why R|G?
•  Problems:

•  Any OS will always be exploitable
•  The richer the OS, the more bugs

•  Need internet access to get work done, have fun
•  The internet is full of bad guys

•  Solution: Isolated work environments:
•  Green: important assets, only talk to good guys

• Don’t tickle the bugs, by restricting inputs
•  Red: less important assets, talk to anybody

• Blow away broken systems
•  Good guys: more trustworthy / accountable

•  Bad guys: less trustworthy or less accountable

24

Configuring Green

•  Green = locked down = only whitelist inputs
•  Requires professional management

•  Few users can make these decisions
•  Avoid “click OK to proceed”

•  To escape, use Red
•  Today almost all machines are Red

25

R|G User Model Dilemma
•  People don’t want complete isolation

•  They want to:
•  Cut/paste, drag/drop
•  Share parts of the file system
•  Share the screen
•  Administer one machine, not multiple
•  …

•  But more integration can weaken isolation
•  Add bugs
•  Compromise security

26

Data Transfer
•  Mediates data transfer between machines

•  Drag / drop, Cut / paste, Shared folders
•  Problems

•  Red → Green : Malware entering
•  Green → Red : Information leaking

•  Possible policy
•  Allowed transfers (configurable). Examples:

•  No transfer of “.exe” from R to G
•  Only transfer ASCII text from R to G

•  Non-spoofable user intent; warning dialogs
•  Auditing

•  Synchronous virus checker; third party hooks, ...

27

Where Should Email/IM Run?
• As productivity applications, they must be well

integrated in the work environment (green)
• Threats—A tunnel from the bad guys

•  Executable attachments
•  Exploits of complicated data formats

• Choices
•  Run two copies, one in Green and one in Red
•  Run in Green and mitigate threats

•  Green platform does not execute arbitrary programs
•  Green apps are conservative in the file formats they accept

•  Route messages to appropriate machine

28

R|G and Enterprise Networks
•  Red	
 and	
 green	

networks	
 are	
 defined	

as	
 today:	

–  IPSEC	

–  Guest	
 firewall	
 	

–  Proxy	
 se[ngs	

–  …	

•  The	
 VMM	
 can	
 act	
 as	
 a	

router	
 	

–  E.g.	
 red	
 only	
 talks	
 to	
 the	

proxy	

Microsoft.
com IM Server

 SMS, AD, email, file
shares, proxy with

white-list, etc

Red
Network

proxy

Red
SMS

and AD

29

Summary
•  Security is about risk management

•  Cost of security < expected loss
•  Security relies on deterrence more than locks

•  Deterrence requires the threat of punishment
•  This requires accountability

•  Accountability needs an ecosystem
•  Senders becoming accountable
•  Receivers verifying accountability

•  Accountability limits freedom
•  Beat this by partitioning: red | green
•  Don’t tickle bugs in green, dispose of red

Today	

•  More	
 security	
 property:	
 Accountability	

•  OS	
 security	

•  Buffer	
 Overflow	

Buffer	
 Over<low	

Attacks	

File	
 system	
 Security	

32	

General	
 Principles	

•  Files	
 and	
 folders	
 are	
 managed	
 by	
 the	

opera2ng	
 system	

•  Applica2ons,	
 including	
 shells,	
 access	
 files	

through	
 an	
 API	

•  Access	
 control	
 entry	
 (ACE)	

•  Allow/deny	
 a	
 certain	
 type	
 of	
 access	
 to	
 a	

file/folder	
 by	
 user/group	

•  Access	
 control	
 list	
 (ACL)	

•  Collec2on	
 of	
 ACEs	
 for	
 a	
 file/folder	

	

•  A	
 file	
 handle	
 provides	
 an	
 opaque	
 iden2fier	

for	
 a	
 file/folder	

•  File	
 opera2ons	

•  Open	
 file:	
 returns	
 file	
 handle	

•  Read/write/execute	
 file	

•  Close	
 file:	
 invalidates	
 file	
 handle	

•  Hierarchical	
 file	
 organiza2on	

•  Tree	
 (Windows)	

•  DAG	
 (Linux)	

33	

Discretionary	
 Access	
 Control	

(DAC)	

•  Users	
 can	
 protect	
 what	
 they	
 own	

•  The	
 owner	
 may	
 grant	
 access	
 to	
 others	

•  The	
 owner	
 may	
 define	
 the	
 type	
 of	
 access	
 (read/write/execute)	
 given	
 to	
 others	

•  DAC	
 is	
 the	
 standard	
 model	
 used	
 in	
 opera2ng	
 systems	

•  Mandatory	
 Access	
 Control	
 (MAC)	

•  Alterna2ve	
 model	
 not	
 covered	
 in	
 this	
 lecture	

•  Mul2ple	
 levels	
 of	
 security	
 for	
 users	
 and	
 documents	

•  Read	
 down	
 and	
 write	
 up	
 principles	

34	

Closed	
 vs.	
 Open	
 Policy	

Closed	
 policy	

•  Also	
 called	
 “default	
 secure”	

•  Give	
 Tom	
 read	
 access	
 to	
 “foo”	

•  Give	
 Bob	
 r/w	
 access	
 to	
 “bar	

•  Tom:	
 I	
 would	
 like	
 to	
 read	
 “foo”	

•  Access	
 allowed	

•  	
 Tom:	
 I	
 would	
 like	
 to	
 read	
 “bar”	

•  Access	
 denied	

	

	

Open	
 Policy	

•  Deny	
 Tom	
 read	
 access	
 to	
 “foo”	

•  Deny	
 Bob	
 r/w	
 access	
 to	
 “bar”	

•  Tom:	
 I	
 would	
 like	
 to	
 read	
 “foo”	

•  Access	
 denied	

•  Tom:	
 I	
 would	
 like	
 to	
 read	
 “bar”	

•  Access	
 allowed	

35	

Closed	
 Policy	
 with	
 Negative	

Authorizations	
 and	
 	
 Deny	
 Priority	
 	

•  Give	
 Tom	
 r/w	
 access	
 to	
 “bar”	

•  Deny	
 Tom	
 write	
 access	
 to	
 “bar”	

•  Tom:	
 I	
 would	
 like	
 to	
 read	
 “bar”	

•  Access	
 	
 allowed	

•  Tom:	
 I	
 would	
 like	
 to	
 write	
 “bar”	

•  Access	
 denied	

•  Policy	
 is	
 used	
 by	
 Windows	
 to	
 manage	
 access	
 control	

to	
 the	
 file	
 system	

36	

Access	
 Control	
 Entries	
 and	

Lists	

•  An	
 Access	
 Control	
 List	
 (ACL)	
 for	
 a	
 resource	
 (e.g.,	
 a	
 file	
 or	

folder)	
 is	
 a	
 sorted	
 list	
 of	
 zero	
 or	
 more	
 Access	
 Control	

Entries	
 (ACEs)	

•  An	
 ACE	
 refers	
 specifies	
 that	
 a	
 certain	
 set	
 of	
 accesses	
 (e.g.,	

read,	
 execute	
 and	
 write)	
 to	
 the	
 resources	
 is	
 allowed	
 or	

denied	
 for	
 a	
 user	
 or	
 group	

•  Examples	
 of	
 ACEs	
 for	
 folder	
 “Bob’s	
 CS167	
 Grades”	

•  Bob;	
 Read;	
 Allow	

•  TAs;	
 Read;	
 Allow	

•  TWD;	
 Read,	
 Write;	
 Allow	

•  Bob;	
 Write;	
 Deny	

•  TAs;	
 Write;	
 Allow	

37	

Linux	
 vs.	
 Windows	

•  Linux	

•  Allow-­‐only	
 ACEs	

•  Access	
 to	
 file	
 depends	
 on	
 ACL	
 of	
 file	
 and	

of	
 all	
 its	
 ancestor	
 folders	

•  Start	
 at	
 root	
 of	
 file	
 system	

•  Traverse	
 path	
 of	
 folders	

•  Each	
 folder	
 must	
 have	
 execute	
 (cd)	

permission	

•  Different	
 paths	
 to	
 same	
 file	
 not	

equivalent	

•  File’s	
 ACL	
 must	
 allow	
 requested	
 access	

•  Windows	

•  Allow	
 and	
 deny	
 ACEs	

•  By	
 default,	
 deny	
 ACEs	
 precede	
 allow	

ones	

•  Access	
 to	
 file	
 depends	
 only	
 on	
 file’s	
 ACL	

•  ACLs	
 of	
 ancestors	
 ignored	
 when	
 access	
 is	

requested	

•  Permissions	
 set	
 on	
 a	
 folder	
 usually	

propagated	
 to	
 descendants	
 (inheritance)	

•  System	
 keeps	
 track	
 of	
 inherited	
 ACE’s	
 	

38	

Linux	
 File	
 Access	
 Control	

•  File	
 Access	
 Control	
 for:	

•  Files	

•  Directories	

•  Therefore…	

•  \dev\	
 :	
 devices	

•  \mnt\	
 :	
 mounted	
 file	
 systems	

•  What	
 else?	
 Sockets,	
 pipes,	
 symbolic	
 links…	

39	

Linux	
 File	
 System	

•  Tree	
 of	
 directories	
 (folders)	

•  Each	
 directory	
 has	
 links	
 to	
 zero	
 or	
 more	
 files	
 or	
 directories	

•  Hard	
 link	

•  From	
 a	
 directory	
 to	
 a	
 file	

•  The	
 same	
 file	
 can	
 have	
 hard	
 links	
 from	
 mul2ple	
 directories,	
 each	
 with	
 its	
 own	
 filename,	
 but	
 all	
 sharing	
 owner,	

group,	
 and	
 permissions	

•  File	
 deleted	
 when	
 no	
 more	
 hard	
 links	
 to	
 it	

•  Symbolic	
 link	
 (symlink)	

•  From	
 a	
 directory	
 to	
 a	
 target	
 file	
 or	
 directory	

•  Stores	
 path	
 to	
 target,	
 which	
 is	
 traversed	
 for	
 each	
 access	

•  The	
 same	
 file	
 or	
 directory	
 can	
 have	
 mul2ple	
 symlinks	
 to	
 it	

•  Removal	
 of	
 symlink	
 does	
 not	
 affect	
 target	

•  Removal	
 of	
 target	
 invalidates	
 (but	
 not	
 removes)	
 symlinks	
 to	
 it	

•  Analogue	
 of	
 Windows	
 shortcut	
 or	
 Mac	
 OS	
 alias	

40	

Unix	
 Permissions	

•  Standard	
 for	
 all	
 UNIXes	

•  Every	
 file	
 is	
 owned	
 by	
 a	
 user	
 and	
 has	
 an	
 associated	

group	

• Permissions	
 osen	
 displayed	
 in	
 compact	
 10-­‐character	

nota2on	

•  To	
 see	
 permissions,	
 use	
 ls –l	

jk@sphere:~/test$ ls –l
total 0
-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1
-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2 41	

Permissions	
 Examples	
 (Regular	
 Files)	

42	

read/write/execute	
 to	
 everyone	
 -­‐rwxrwxrwx	

read-­‐only	
 to	
 everyone,	
 including	

owner	

-­‐r-­‐-­‐r-­‐-­‐r-­‐-­‐	

read/write/execute	
 for	
 owner,	

forbidden	
 to	
 everyone	
 else	

-­‐rwx-­‐-­‐-­‐-­‐-­‐-­‐	

read/write	
 for	
 owner,	
 read-­‐only	

for	
 group,	
 forbidden	
 to	
 others	

-­‐rw-­‐r-­‐-­‐-­‐-­‐-­‐	

read/write	
 for	
 owner,	
 read-­‐only	

for	
 everyone	
 else	

-­‐rw-­‐r—r-­‐-­‐	

Permissions	
 for	
 Directories	

•  Permissions	
 bits	
 interpreted	
 differently	
 for	
 directories	

•  Read	
 bit	
 allows	
 lis2ng	
 names	
 of	
 files	
 in	
 directory,	
 but	
 not	
 their	

proper2es	
 like	
 size	
 and	
 permissions	

• Write	
 bit	
 allows	
 crea2ng	
 and	
 dele2ng	
 files	
 within	
 the	

directory	

•  Execute	
 bit	
 allows	
 entering	
 the	
 directory	
 and	
 ge[ng	

proper2es	
 of	
 files	
 in	
 the	
 directory	

•  Lines	
 for	
 directories	
 in	
 ls –l	
 output	
 begin	
 with	
 d,	
 as	
 below:	

	

jk@sphere:~/test$ ls –l
Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1

43	

Permissions	
 Examples	

(Directories)	

44	

full	
 access	
 to	
 everyone	
 -­‐rwxrwxrwx	

full	
 access	
 to	
 owner,	
 group	
 can	

access	
 known	
 filenames	
 in	

directory,	
 forbidden	
 to	
 others	

drwx-­‐-­‐x-­‐-­‐-­‐	

full	
 access	
 to	
 owner	
 and	
 group,	

forbidden	
 to	
 others	

drwxrwx-­‐-­‐-­‐	

all	
 can	
 enter	
 and	
 list	
 the	
 directory,	

only	
 owner	
 can	
 add/delete	
 files	

drwxr-­‐xr-­‐x	

File	
 Sharing	
 Challenge	

•  Crea2ng	
 and	
 modifying	
 groups	
 requires	
 root	

•  Given	
 a	
 directory	
 with	
 permissions	
 drwx-­‐-­‐-­‐-­‐-­‐-­‐x	
 and	
 a	
 file	
 in	
 it	

•  Give	
 permission	
 to	
 write	
 the	
 file	
 to	
 user1,	
 user2,	
 user3,	
 …	
 without	
 crea2ng	
 a	
 new	
 group	

•  Selec2vely	
 revoke	
 a	
 user	

•  Solu2on	
 1	

•  Give	
 file	
 write	
 permission	
 for	
 everyone	

•  Create	
 different	
 random	
 hard	
 links:	
 user1-­‐23421,	
 user2-­‐56784,	
 …	

•  Problem!	
 Selec2vely	
 removing	
 access:	
 hard	
 link	
 can	
 be	
 copied	

•  Solu2on	
 2	

•  Create	
 random	
 symbolic	
 links	

•  Problem!	
 Symbolic	
 link	
 tells	
 where	
 it	
 points	

45	

Working	
 Graphically	
 with	
 Permissions	

•  Several	
 Linux	
 GUIs	
 exist	
 for	

displaying	
 and	
 changing	

permissions	

•  In	
 KDE’s	
 file	
 manager	

Konqueror,	
 right-­‐click	
 on	
 a	
 file	

and	
 choose	
 Proper2es,	
 and	

click	
 on	
 the	
 Permissions	
 tab:	

•  Changes	
 can	
 be	
 made	
 here	

(more	
 about	
 changes	
 later)	

46	

Special	
 Permission	
 Bits	

•  Three	
 other	
 permission	
 bits	
 exist	

•  Set-­‐user-­‐ID	
 (“suid”	
 or	
 “setuid”)	
 bit	

•  Set-­‐group-­‐ID	
 (“sgid”	
 or	
 “setgid”)	
 bit	

•  S2cky	
 bit	

47	

Set-­‐user-­‐ID	

•  Set-­‐user-­‐ID	
 (“suid”	
 or	
 “setuid”)	
 bit	

•  On	
 executable	
 files,	
 causes	
 the	
 program	
 to	
 run	
 as	
 file	
 owner	
 regardless	

of	
 who	
 runs	
 it	

•  Ignored	
 for	
 everything	
 else	

•  In	
 10-­‐character	
 display,	
 replaces	
 the	
 4th	
 character	
 (x	
 or	
 -)	
 with	
 s	
 (or	
 S	
 if	

not	
 also	
 executable)	

-­‐rwsr-­‐xr-­‐x:	
 setuid,	
 executable	
 by	
 all	

-­‐rwxr-­‐xr-­‐x:	
 executable	
 by	
 all,	
 but	
 not	
 setuid	

-­‐rwSr-­‐-­‐r-­‐-­‐:	
 setuid,	
 but	
 not	
 executable	
 -­‐	
 not	
 useful	

48	

Set-­‐group-­‐ID	

•  Set-­‐group-­‐ID	
 (“sgid”	
 or	
 “setgid”)	
 bit	

•  On	
 executable	
 files,	
 causes	
 the	
 program	
 to	
 run	
 with	
 the	
 file’s	
 group,	

regardless	
 of	
 whether	
 the	
 user	
 who	
 runs	
 it	
 is	
 in	
 that	
 group	

•  On	
 directories,	
 causes	
 files	
 created	
 within	
 the	
 directory	
 to	
 have	
 the	

same	
 group	
 as	
 the	
 directory,	
 useful	
 for	
 directories	
 shared	
 by	
 mul2ple	

users	
 with	
 different	
 default	
 groups	

•  Ignored	
 for	
 everything	
 else	

•  In	
 10-­‐character	
 display,	
 replaces	
 7th	
 character	
 (x	
 or	
 -)	
 with	
 s	
 (or	
 S	
 if	
 not	

also	
 executable)	

-rwxr-sr-x:	
 setgid	
 file,	
 executable	
 by	
 all	

drwxrwsr-x:	
 setgid	
 directory;	
 files	
 within	
 will	
 have	
 group	
 of	
 directory	

-rw-r-Sr--:	
 setgid	
 file,	
 but	
 not	
 executable	
 -­‐	
 not	
 useful	

49	

Sticky	
 Bit	

•  On	
 directories,	
 prevents	
 users	
 from	
 dele2ng	
 or	
 renaming	
 files	

they	
 do	
 not	
 own	

•  Ignored	
 for	
 everything	
 else	

•  In	
 10-­‐character	
 display,	
 replaces	
 10th	
 character	
 (x	
 or	
 -)	
 with	
 t	

(or	
 T	
 if	
 not	
 also	
 executable)	

drwxrwxrwt:	
 s2cky	
 bit	
 set,	
 full	
 access	
 for	
 everyone	

drwxrwx--T:	
 s2cky	
 bit	
 set,	
 full	
 access	
 by	
 user/group	

drwxr--r-T:	
 s2cky,	
 full	
 owner	
 access,	
 others	
 can	
 read	
 (useless)	

50	

Working	
 Graphically	
 with	
 Special	
 Bits	

•  Special	
 permission	
 bits	
 can	
 also	
 be	
 displayed	
 and	
 changed	

through	
 a	
 GUI	

•  In	
 Konqueror’s	
 Permissions	
 window,	
 click	
 Advanced	

Permissions:	

•  Changes	
 can	
 be	
 made	
 here	
 (more	
 about	
 changes	
 later)	

51	

Root	

•  “root”	
 account	
 is	
 a	
 super-­‐user	
 account,	
 like	

Administrator	
 on	
 Windows	

	

• Mul2ple	
 roots	
 possible	

	

•  File	
 permissions	
 do	
 not	
 restrict	
 root	

	

•  This	
 is	
 dangerous,	
 but	
 necessary,	
 and	
 OK	
 with	
 good	

prac2ces	

52	

Becoming	
 Root	

•  su

•  Changes	
 home	
 directory,	
 PATH,	
 and	
 shell	
 to	
 that	
 of	
 root,	
 but	
 doesn’t	
 touch	
 most	
 of	

environment	
 and	
 doesn’t	
 run	
 login	
 scripts	

•  su	
 -­‐	
 	

•  Logs	
 in	
 as	
 root	
 just	
 as	
 if	
 root	
 had	
 done	
 so	
 normally	

	

•  sudo	
 <command>	

•  Run	
 just	
 one	
 command	
 as	
 root	

•  su	
 [-­‐]	
 <user>	

•  Become	
 another	
 non-­‐root	
 user	

•  Root	
 does	
 not	
 require	
 to	
 enter	
 password	

53	

Changing	
 Permissions	

•  Permissions	
 are	
 changed	
 with	
 chmod	
 or	
 through	
 a	
 GUI	
 like	

Konqueror	

•  Only	
 the	
 file	
 owner	
 or	
 root	
 can	
 change	
 permissions	

•  If	
 a	
 user	
 owns	
 a	
 file,	
 the	
 user	
 can	
 use	
 chgrp	
 to	
 set	
 its	
 group	
 to	

any	
 group	
 of	
 which	
 the	
 user	
 is	
 a	
 member	

•  root	
 can	
 change	
 file	
 ownership	
 with	
 chown	
 (and	
 can	

op2onally	
 change	
 group	
 in	
 the	
 same	
 command)	

•  chown,	
 chmod,	
 and	
 chgrp	
 can	
 take	
 the	
 -­‐R	
 op2on	
 to	
 recur	

through	
 subdirectories	

54	

Examples	
 of	
 Changing	

Permissions	

55	

Sets	
 the	
 setuid	
 bit	
 on	
 file1.	

(Doesn’t	
 change	
 execute	
 bit.)	

chmod	
 u+s	
 file1	

Sets	
 file1’s	
 group	
 to	
 testgrp,	
 if	
 the	

user	
 is	
 a	
 member	
 of	
 that	
 group	

chgrp	
 testgrp	
 file1	

Adds	
 group	
 read/write	
 permission	
 to	

dir1	
 and	
 everything	
 within	
 it,	
 and	
 group	

execute	
 permission	
 on	
 files	
 or	

directories	
 where	
 someone	
 has	
 execute	

permission	

chmod	
 -­‐R	
 g=rwX	
 dir1	

Adds	
 group	
 write	
 permission	
 to	

file1	
 and	
 file2,	
 denying	
 all	
 access	

to	
 others	

chmod	
 g+w,o-­‐rwx	
 file1	
 file2	

Changes	
 ownership	
 of	
 dir1	
 and	

everything	
 within	
 it	
 to	
 root	

chown	
 -­‐R	
 root	
 dir1	

Octal	
 Notation	

• Previous	
 slide’s	
 syntax	
 is	
 nice	
 for	
 simple	
 cases,	
 but	

bad	
 for	
 complex	
 changes	

•  Alterna2ve	
 is	
 octal	
 nota2on,	
 i.e.,	
 three	
 or	
 four	
 digits	
 from	
 0	

to	
 7	

• Digits	
 from	
 les	
 (most	
 significant)	
 to	
 right(least	

significant):	

	
 [special	
 bits][user	
 bits][group	
 bits][other	
 bits]	

•  Special	
 bit	
 digit	
 =	

	
 (4	
 if	
 setuid)	
 +	
 (2	
 if	
 setgid)	
 +	
 (1	
 if	
 s2cky)	

• All	
 other	
 digits	
 =	

	
 (4	
 if	
 readable)	
 +	
 (2	
 if	
 writable)	
 +	
 (1	
 if	
 executable)	
 56	

Octal	
 Notation	
 Examples	

57	

read/write/execute	
 to	
 everyone	
 (dangerous!)	
 777	
 or	
 0777	

same	
 as	
 777,	
 plus	
 s2cky	
 bit	
 1777	

same	
 as	
 775,	
 plus	
 setgid	
 (useful	
 for	
 directories)	
 2775	

read/write	
 for	
 owner,	
 read-­‐only	
 for	
 group,	
 forbidden	
 to	

others	

640	
 or	
 0640	

read/write/execute	
 for	
 owner	
 and	
 group,	
 read/execute	
 for	

others	

775	
 or	
 0775	

read/write	
 for	
 owner,	
 read-­‐only	
 for	
 everyone	
 else	
 644	
 or	
 0644	

Limitations	
 of	
 Unix	
 Permissions	

•  Unix	
 permissions	
 are	
 not	
 perfect	

•  Groups	
 are	
 restric2ve	

•  Limita2ons	
 on	
 file	
 crea2on	

•  Linux	
 op2onally	
 uses	
 POSIX	
 ACLs	

•  Builds	
 on	
 top	
 of	
 tradi2onal	
 Unix	
 permissions	

•  Several	
 users	
 and	
 groups	
 can	
 be	
 named	
 in	
 ACLs,	
 each	
 with	

different	
 permissions	

•  Allows	
 for	
 finer-­‐grained	
 access	
 control	

•  Each	
 ACL	
 is	
 of	
 the	
 form	
 type:[name]:rwx	

•  Setuid,	
 setgid,	
 and	
 s2cky	
 bits	
 are	
 outside	
 the	
 ACL	
 system	

	

58	

Minimal	
 ACLs	

•  In	
 a	
 file	
 with	
 minimal	
 ACLs,	
 name	
 does	
 not	
 appear,	
 and	
 the	

ACLs	
 with	
 type	
 “user”	
 and	
 “group”	
 correspond	
 to	
 Unix	
 user	

and	
 group	
 permissions,	
 respec2vely.	

•  When	
 name	
 is	
 omiGed	
 from	
 a	
 “user”	
 type	
 ACL	
 entry,	
 it	
 applies	
 to	
 the	

file	
 owner.	

59	

ACL	
 Commands	

•  ACLs	
 are	
 read	
 with	
 the	
 getfacl	
 command	
 and	
 set	
 with	
 the	

setfacl	
 command.	

•  Changing	
 the	
 ACLs	
 corresponding	
 to	
 Unix	
 permissions	
 shows	

up	
 in	
 ls -l	
 output,	
 and	
 changing	
 the	
 Unix	
 permissions	
 with	

chmod	
 changes	
 those	
 ACLs.	

•  Example	
 of	
 getfacl:	

	

	

	

	

	

	

60	

jimmy@techhouse:~/test$ ls -l
total 4
drwxr-x--- 2 jimmy jimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
group::r-x
other::---

More	
 ACL	
 Command	
 Examples	

61	

jimmy@techhouse:~/test$ setfacl -m group::rwx dir
jimmy@techhouse:~/test$ ls -l
total 4
drwxrwx--- 2 jimmy jimmy 4096 2005-12-02 04:13 dir

jimmy@techhouse:~/test$ chmod 755 dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
group::r-x
other::r-x

Extended	
 ACLs	

•  ACLs	
 that	
 say	
 more	
 than	
 Unix	
 permissions	
 are	
 extended	
 ACLs	

•  Specific	
 users	
 and	
 groups	
 can	
 be	
 named	
 and	
 given	
 permissions	
 via	

ACLs,	
 which	
 fall	
 under	
 the	
 group	
 class	
 (even	
 for	
 for	
 ACLs	
 naming	
 users	

and	
 not	
 groups)	

•  With	
 extended	
 ACLs,	
 mapping	
 to	
 and	
 from	
 Unix	
 permissions	
 is	

a	
 bit	
 complicated.	

•  User	
 and	
 other	
 classes	
 map	
 directly	
 to	
 the	
 corresponding	
 Unix	

permission	
 bits	

•  Group	
 class	
 contains	
 named	
 users	
 and	
 groups	
 as	
 well	
 as	

owning	
 group	
 permissions.	
 How	
 to	
 map?	

62	

Mask-­‐type	
 ACLs	

•  Unix	
 group	
 permissions	
 now	
 map	
 to	
 an	
 ACL	
 of	
 type	
 “mask”,	
 which	
 is	
 an	

upper	
 bound	
 on	
 permissions	
 for	
 all	
 group	
 class	
 ACLs.	

•  All	
 group	
 class	
 ACLs	
 are	
 logically	
 and-­‐ed	
 with	
 the	
 mask	
 before	
 taking	

effect	

•  rw-­‐—xrw-­‐	
 &	
 r-­‐x—x-­‐-­‐-­‐	
 =	
 	
 r-­‐-­‐-­‐-­‐x-­‐-­‐	

•  The	
 ACL	
 of	
 type	
 “group”	
 with	
 no	
 name	
 s2ll	
 refers	
 to	
 the	
 Unix	
 owning	

group	

•  Mask	
 ACLs	
 are	
 created	
 automa2cally	
 with	
 the	
 necessary	
 bits	
 such	
 that	

they	
 do	
 not	
 restrict	
 the	
 other	
 ACLs	
 at	
 all,	
 but	
 this	
 can	
 be	
 changed	
 63	

Extended	
 ACL	
 Example	

64	

jimmy@techhouse:~/test$ ls -l
total 4
drwxr-xr-x 2 jimmy jimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ setfacl -m user:joe:rwx dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::r-x

jimmy@techhouse:~/test$ ls -l
total 8
drwxrwxr-x+ 2 jimmy jimmy 4096 2005-12-02 04:13 dir

Extended	
 ACL	
 Example	

Explained	

•  The	
 preceding	
 slide	
 grants	
 the	
 named	
 user	
 joe	
 read,	
 write,	
 and	

execute	
 access	
 to	
 dir.	

•  dir	
 now	
 has	
 extended	
 rather	
 than	
 minimal	
 ACLs.	

•  The	
 mask	
 is	
 set	
 to	
 rwx,	
 the	
 union	
 of	
 the	
 two	
 group	
 class	
 ACLs	

(named	
 user	
 joe	
 and	
 the	
 owning	
 group).	

•  In	
 ls -l	
 output,	
 the	
 group	
 permission	
 bits	
 show	
 the	
 mask,	
 not	

the	
 owning	
 group	
 ACL	

•  Effec2ve	
 owning	
 group	
 permissions	
 are	
 the	
 logical	
 and	
 of	
 the	

owning	
 group	
 ACL	
 and	
 the	
 mask,	
 which	
 s2ll	
 equals	
 r-­‐x.	

•  This	
 could	
 reduce	
 the	
 effec2ve	
 owning	
 group	
 permissions	
 if	
 the	

mask	
 is	
 changed	
 to	
 be	
 more	
 restric2ve.	

•  The	
 +	
 in	
 the	
 ls -l	
 output	
 aser	
 the	
 permission	
 bits	
 indicates	

that	
 there	
 are	
 extended	
 ACLs,	
 which	
 can	
 be	
 viewed	
 with	

getfacl.	
 65	

Default	
 ACLs	

•  The	
 kind	
 of	
 ACLs	
 we've	
 men2oned	
 so	
 far	
 are	
 access	
 ACLs.	

•  A	
 directory	
 can	
 have	
 an	
 addi2onal	
 set	
 of	
 ACLs,	
 called	
 default	

ACLs,	
 which	
 are	
 inherited	
 by	
 files	
 and	
 subdirectories	
 created	

within	
 that	
 directory.	

•  Subdirectories	
 inherit	
 the	
 parent	
 directory's	
 default	
 ACLs	
 as	

both	
 their	
 default	
 and	
 their	
 access	
 ACLs.	

•  Files	
 inherit	
 the	
 parent	
 directory's	
 default	
 ACLs	
 only	
 as	
 their	

access	
 ACLs,	
 since	
 they	
 have	
 no	
 default	
 ACLs.	

•  The	
 inherited	
 permissions	
 for	
 the	
 user,	
 group,	
 and	
 other	
 classes	

are	
 logically	
 and-­‐ed	
 with	
 the	
 tradi2onal	
 Unix	
 permissions	

specified	
 to	
 the	
 file	
 crea2on	
 procedure.	

66	

Default	
 ACL	
 Example	

67	

jimmy@techhouse:~/test$ setfacl -d -m group:webmaster:rwx
dir
jimmy@techhouse:~/test$ getfacl dir
file: dir
owner: jimmy
group: jimmy
user::rwx
user:joe:rwx
group::r-x
mask::rwx
other::r-x
default:user::rwx
default:group::r-x
default:group:webmaster:rwx
default:mask::rwx
default:other::r-x

Note	
 how	
 this	
 starts	
 the	
 default	
 ACLs	
 out	
 as	
 equal	
 to	
 the	
 exis2ng	
 access	
 ACLs	
 plus	
 the	

specified	
 changes.	

Default	
 ACL	
 Example	
 Continued	

68	

jimmy@techhouse:~/test$ mkdir dir/subdir
jimmy@techhouse:~/test$ getfacl dir/subdir
file: dir/subdir
owner: jimmy
group: jimmy
user::rwx
group::r-x
group:webmaster:rwx
mask::rwx
other::r-x
default:user::rwx
default:group::r-x
default:group:webmaster:rwx
default:mask::rwx
default:other::r-x

The	
 default	
 ACLs	
 from	
 the	
 parent	
 directory	
 are	
 both	
 the	
 access	
 and	
 default	

ACLs	
 for	
 this	
 directory.	
 Group	
 webmaster	
 has	
 full	
 access.	

Default	
 ACL	
 Example	
 Continued	

69	

jimmy@techhouse:~/test$ touch dir/file
jimmy@techhouse:~/test$ ls -l dir/file
-rw-rw-r--+ 1 jimmy jimmy 0 2005-12-02 11:36 dir/file
jimmy@techhouse:~/test$ getfacl dir/file
file: dir/file
owner: jimmy
group: jimmy
user::rw-
group::r-x #effective:r--
group:webmaster:rwx #effective:rw-
mask::rw-
other::r--

The	
 default	
 ACLs	
 from	
 the	
 parent	
 directory	
 are	
 the	
 basis	
 for	
 the	
 access	

ACLs	
 on	
 this	
 file,	
 but	
 since	
 touch	
 creates	
 files	
 without	
 any	
 execute	
 bit	
 set,	

the	
 user	
 and	
 other	
 classes,	
 and	
 the	
 group	
 class	
 as	
 well	
 via	
 the	
 mask	
 ACL,	

have	
 their	
 execute	
 bits	
 removed	
 to	
 match.	

NTFS	
 	
 Permissions	

70	

NTFS Partition

ACL

User 1

User 2

Read

Group 1

User 1
Read

Group 1
Full Control

Full Control

ACE	

ACE	

Basic	
 NTFS	
 Permissions	

71	

Group A

User 1

Multiple	
 NTFS	
 permissions	

72	

n  NTFS	
 permissions	
 are	
 cumula2ve	

n  File	
 permissions	
 override	
 folder	
 permissions	

n  Deny	
 overrides	
 Allow	

File1

File2

Group B

Group A

Write	
 denied	
 	

User 1

Read	

Read/Write Folder A Group B
Write	

NTFS:	
 permission	
 inheritance	

73	

Folder A

Access	
 allowed	
 for	
 File	
 1	

Access	
 denied	
 for	
 File	
 1	

Block of Inheritance

Permission Inheritance

File1

Read/Write

Read/Write Folder A

File1

NTFS	
 File	
 Permissions	

•  Explicit:	
 set	
 by	
 the	
 owner	
 for	
 each	
 user/group.	
 	

•  Inherited:	
 dynamically	
 inherited	
 from	
 the	
 explicit	

permissions	
 of	
 ancestor	
 folders.	
 	

•  Effec(ve:	
 obtained	
 by	
 combining	
 the	
 explicit	
 and	

inherited	
 permission.	
 	

74	

Rules	

inherited	

explicit	

effec2ve	
 Determining	
 	
 effec2ve	
 permissions:	

n  By	
 default,	
 a	
 user/group	
 has	
 no	

privileges.	

n  Explicit	
 permissions	
 override	

conflic2ng	
 inherited	
 permissions.	

n  Denied	
 permissions	
 override	

conflic2ng	
 allowed	
 permissions.	

Access	
 Control	
 Algorithm	

•  The	
 DACL	
 of	
 a	
 file	
 or	
 folder	
 is	
 a	
 sorted	
 list	
 of	
 ACEs	

•  Local	
 ACEs	
 precede	
 inherited	
 ACEs	

•  ACEs	
 inherited	
 from	
 folder	
 F	
 precede	
 those	
 inherited	
 from	
 parent	
 of	
 F	

•  Among	
 those	
 with	
 same	
 source,	
 Deny	
 ACEs	
 precede	
 Allow	
 ACEs	

•  Algorithm	
 for	
 gran2ng	
 access	
 request	
 (e.g.,	
 read	
 and	
 execute):	

•  ACEs	
 in	
 the	
 DACL	
 are	
 examined	
 in	
 order	

•  Does	
 the	
 ACE	
 refer	
 to	
 the	
 user	
 or	
 a	
 group	
 containing	
 the	
 user?	

•  If	
 so,	
 do	
 any	
 of	
 the	
 accesses	
 in	
 the	
 ACE	
 match	
 those	
 of	
 the	
 request?	

•  If	
 so,	
 what	
 type	
 of	
 ACE	
 is	
 it?	

•  Deny:	
 return	
 ACCESS_DENIED	

•  Allow:	
 grant	
 the	
 specified	
 accesses	
 and	
 if	
 there	
 are	
 no	
 remaining	
 accesses	
 to	
 grant,	

return	
 ACCESS_ALLOWED	

•  If	
 we	
 reach	
 the	
 end	
 of	
 the	
 DACL	
 and	
 there	
 are	
 remaining	
 requested	
 accesses	

that	
 have	
 not	
 been	
 granted	
 yet,	
 return	
 ACCESS_DENIED	

75	

Example	

76	

n Customers Group
Write Folder1

n Marketing Group
Read Folder1

n Customers Group
Read Folder1

n Marketing Group
Write Folder2

n Customers Group
Modify Folder1

n  File2 should only be
accessible to
Marketing Group, and
only for read access

File2

Folder1

Folder2

File1
User1

NTFS	

Customers Group

Marketing Group

NTFS	
 move	
 vs.	
 copy	
 in	
 same	

volume	

•  If	
 you	
 move	
 a	
 file	
 or	
 a	
 folder	

inside	
 the	
 same	
 volume	
 your	

permission	
 will	
 be	
 the	
 same	

of	
 the	
 source	
 folder	
 	
 	

•  If	
 you	
 copy	
 a	
 file	
 or	
 a	
 folder	

inside	
 the	
 same	
 volume	
 your	

permission	
 will	
 be	
 the	
 same	

of	
 the	
 des(na(on	
 folder	

	

77	

NTFS E:\
Copy Move

NTFS	
 move	
 vs.	
 copy	
 across	

volumes	

•  If	
 you	
 copy	
 or	
 move	
 a	
 file	
 or	
 a	
 folder	
 on	
 different	
 volumes	

your	
 permission	
 will	
 be	
 the	
 same	
 of	
 the	
 des(na(on	
 folder	

78	

NTFS D:\

NTFS E:\ NTFS C:\ Copy

Move

Setting	
 File	
 Permissions	
 in	
 Win	
 XP	

79	

n  NTFS	
 permissions	
 in	
 	

Windows	
 XP	
 Pro	
 are	
 disabled	
 by	

default.	

n  Using	
 Folder	
 Op(ons…	
 	
 from	

Tools	
 menu	
 inside	
 Windows	

Explorer	
 is	
 possible	
 to	
 ac2vate	

NTFS	
 permission	
 in	
 windows	
 by	

unchecking	
 Use	
 simple	
 file	

sharing	

Windows	
 Tools	

•  Access	
 control	
 management	

tools	
 provide	
 detailed	

informa2on	
 and	
 controls,	

across	
 mul2ple	
 dialogs.	

•  Focus	
 on	
 single	
 file/folders.	
 	

•  It	
 is	
 challenging	
 	
 for	
 an	

inexperienced	
 user,	
 or	
 a	

system	
 administrator	
 dealing	

with	
 very	
 large	
 file	
 structures,	

to	
 gain	
 a	
 global	
 view	
 of	

permissions	
 within	
 the	
 file	

system	
 	

80	

Treemap	
 Access	
 Control	
 Evaluator	

(TrACE)	

81	
 Alexander	
 Heitzmann,	
 Bernardo	
 Palazzi,	
 Charalampos	

Papamanthou,	
 Roberto	
 Tamassia.	
 EffecDve	
 VisualizaDon	
 of	
 File	

System	
 Access	
 Control,	
 VizSEC	
 2008	

Sponsors:	

TrACE	
 Highlights	

•  At	
 a	
 glance,	
 determine	
 the	

explicit,	
 inherited,	
 and	

effec2ve	
 permissions	
 of	

files	
 and	
 folders.	

•  Understand	
 access	
 control	

rela2onships	
 between	

files	
 and	
 their	
 ancestors	

•  Quickly	
 evaluate	
 large	

directory	
 structures	
 and	

find	
 problem	
 areas	

•  Layout	
 based	
 on	
 treemaps	
 82	

What	
 is	
 a	
 Treemap?	

•  A	
 visualiza2on	
 method	
 to	
 display	
 large	
 hierarchical	
 data	

structures	
 (trees)	

•  Layout	
 based	
 on	
 nested	
 rectangles.	

•  Treemaps	
 were	
 introduced	
 by	
 Ben	
 Shneiderman	
 in	
 “Tree	

visualiza2on	
 with	
 tree-­‐maps:	
 2-­‐d	
 space-­‐filling	
 approach”;	

TOG	
 1991	

83	

A	

B	
 C	

F	

E	

D	

84	

85	

Acknowledgment	

•  Much	
 of	
 these	
 POSIX	
 ACL	
 slides	
 are	
 adapted	
 (and	
 some	
 pictures	
 are	

taken)	
 from	
 Andreas	
 Grünbacher’s	
 paper	
 POSIX	
 Access	
 Control	
 Lists	

on	
 Linux,	
 available	
 online	
 at:	

	

hGp://www.suse.de/~agruen/acl/linux-­‐acls/	

86	

What	
 is	
 an	
 Exploit?	

•  An	
 exploit	
 is	
 any	
 input	
 (i.e.,	
 a	
 piece	
 of	
 sosware,	
 an	
 argument	

string,	
 or	
 sequence	
 of	
 commands)	
 that	
 takes	
 advantage	
 of	
 a	

bug,	
 glitch	
 	
 or	
 vulnerability	
 	
 in	
 order	
 to	
 cause	
 	
 an	
 aGack	

•  An	
 aGack	
 is	
 an	
 unintended	
 or	
 unan2cipated	
 behavior	
 that	

occurs	
 on	
 computer	
 sosware,	
 hardware,	
 or	
 something	

electronic	
 and	
 that	
 brings	
 an	
 advantage	
 to	
 the	
 	
 aGacker	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

87	

Buffer	
 Over<low	
 Attack	

•  One	
 of	
 the	
 most	
 common	
 OS	
 bugs	
 is	
 a	
 buffer	
 overflow	

–  The	
 developer	
 fails	
 to	
 include	
 code	
 that	
 	
 checks	
 	
 whether	
 an	
 input	

string	
 fits	
 into	
 its	
 buffer	
 array	

–  An	
 input	
 to	
 the	
 running	
 process	
 exceeds	
 the	
 length	
 of	
 	
 the	
 buffer	

–  The	
 input	
 string	
 overwrites	
 a	
 por2on	
 of	
 the	
 memory	
 of	
 the	
 process	

–  Causes	
 the	
 applica2on	
 to	
 behave	
 improperly	
 and	
 unexpectedly	

•  Effect	
 of	
 a	
 buffer	
 overflow	

–  The	
 process	
 can	
 operate	
 on	
 malicious	
 data	
 or	
 execute	
 malicious	

code	
 passed	
 in	
 by	
 the	
 aGacker	

–  If	
 	
 the	
 process	
 is	
 executed	
 as	
 root,	
 the	
 malicious	
 code	
 will	
 be	

execu2ng	
 with	
 root	
 privileges	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

88	

Address	
 Space	

•  Every	
 program	
 needs	
 to	
 access	
 memory	
 in	
 order	
 to	
 run	

•  For	
 simplicity	
 sake,	
 it	
 would	
 be	
 nice	
 to	
 allow	
 each	

process	
 (i.e.,	
 each	
 execu2ng	
 program)	
 to	
 act	
 as	
 if	
 it	

owns	
 all	
 of	
 memory	

•  The	
 address	
 space	
 model	
 is	
 used	
 to	
 accomplish	
 this	

•  Each	
 process	
 can	
 allocate	
 space	
 anywhere	
 it	
 wants	
 in	

memory	

• Most	
 kernels	
 manage	
 each	
 process’	
 alloca2on	
 of	

memory	
 through	
 the	
 virtual	
 memory	
 model	

•  How	
 the	
 memory	
 is	
 managed	
 is	
 irrelevant	
 to	
 the	
 process	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

89	

Virtual	
 Memory	

Mapping	
 virtual	
 addresses	
 to	
 real	
 addresses	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

90	

Another	

Program	

Hard	
 Drive	

Program	
 Sees	
 Actual	
 Memory	

Unix	
 Address	
 Space	

•  Text:	
 machine	
 code	
 of	
 the	
 program,	

compiled	
 from	
 the	
 source	
 code	

•  Data:	
 sta2c	
 program	
 variables	
 ini2alized	
 in	

the	
 source	
 code	
 prior	
 to	
 execu2on	

•  BSS	
 (block	
 started	
 by	
 symbol):	
 sta2c	

variables	
 that	
 are	
 unini2alized	

•  Heap	
 :	
 data	
 dynamically	
 generated	
 during	

the	
 execu2on	
 of	
 a	
 process	

•  Stack:	
 structure	
 that	
 grows	
 downwards	

and	
 	
 keeps	
 track	
 	
 of	
 the	
 ac2vated	
 	
 method	

calls,	
 their	
 arguments	
 and	
 local	
 variables	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

91	
 Low	
 Addresses	

0x0000	
 0000	

High	
 Addresses	

0xFFFF	
 FFFF	

Stack	

Heap	

BSS	

Data	

Text	

Vulnerabilities	
 and	
 Attack	

Method	

•  Vulnerability	
 scenarios	

•  The	
 program	
 has	
 root	
 privileges	
 (setuid)	
 and	
 is	
 launched	
 from	
 a	

shell	
 	

•  The	
 program	
 is	
 part	
 of	
 a	
 web	
 applica2on	

•  Typical	
 aGack	
 method	

1.  Find	
 vulnerability	

2.  Reverse	
 engineer	
 the	
 program	

3.  Build	
 the	
 exploit	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

92	

Buffer	
 Over<low	
 Attack	
 in	
 a	

Nutshell	

•  First	
 described	
 in	

Aleph	
 One.	
 Smashing	
 The	
 Stack	
 For	
 Fun	
 And	
 Profit.	
 e-­‐zine	

www.Phrack.org	
 #49,	
 1996	

•  The	
 aGacker	
 exploits	
 an	
 unchecked	
 buffer	
 	
 to	

perform	
 a	
 buffer	
 overflow	
 aGack	

•  The	
 ul2mate	
 goal	
 for	
 the	
 aGacker	
 is	
 ge[ng	
 a	
 shell	

that	
 allows	
 to	
 execute	
 arbitrary	
 commands	
 with	

high	
 privileges	

•  Kinds	
 of	
 buffer	
 overflow	
 aGacks:	

–  Heap	
 smashing	

–  Stack	
 smashing	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

93	

Buffer	
 Over<low	

•  Retrieves	
 domain	
 registra2on	
 info	

•  e.g.,	
 domain	
 brown.edu	

10
/2
1/
13
	

Buffer	
 Overflow	

94	

domain.c	

Main(int	
 argc,	
 char	
 *argv[
])	
 	

/*	
 get	
 user_input	
 */	

{	

	
 	
 	
 	
 char	
 var1[15];	

	
 	
 	
 	
 char	
 command[20];	

	
 	
 	
 	
 strcpy(command,	
 “whois	
 ");	

	
 	
 	
 	
 strcat(command,	
 argv[1]);	

	
 	
 	
 	
 strcpy(var1,	
 argv[1]);	

	
 	
 	
 	
 prin�(var1);	

	
 	
 	
 	
 system(command);	

}	
 	
 	

Top	
 of	

Memory	

0xFFFFFFFF	

BoGom	
 of	

Memory	

0x00000000	

.	
 .	
 .	

Stack	

Fill	

Direc2on	

var1 (15 char)

command
(20 char)

strcpy()	
 Vulnerability	

•  argv[1]	
 is	
 the	
 user	
 input	

•  strcpy(dest,	
 src)	
 	
 does	
 not	
 check	
 buffer	

•  strcat(d,	
 s)	
 concatenates	
 strings	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

95	

domain.c	

Main(int	
 argc,	
 char	
 *argv[])	
 	

/*get	
 user_input*/	

{	

	
 	
 	
 	
 char	
 var1[15];	

	
 	
 	
 	
 char	
 command[20]; 	
 	

	
 	
 	
 	
 strcpy(command,	
 “whois	
 ");	

	
 	
 	
 	
 strcat(command,	
 argv[1]);	

	
 	
 	
 	
 strcpy(var1,	
 argv[1]);	

	
 	
 	
 	
 prin�(var1);	

	
 	
 	
 	
 system(command);	

}	
 	
 	

var1	
 (15	
 char)	
 	

command
(20 char)

argv[1]

(15 char)
argv[1]

(20 char)

Top	
 of	

Memory	

0xFFFFFFFF	

BoGom	
 of	

Memory	

0x00000000	

.	
 .	
 .	

Stack	

Fill	

Direc2on	

Overflow
exploit

strcpy()	
 vs.	
 strncpy()
•  Func2on	
 strcpy()	
 copies	
 the	
 string	
 in	
 the	
 second	

argument	
 into	
 the	
 first	
 argument	

– e.g.,	
 strcpy(dest,	
 src)	

– If	
 source	
 string	
 >	
 des2na2on	
 string,	
 the	
 overflow	
 characters	

may	
 occupy	
 the	
 memory	
 space	
 used	
 by	
 other	
 variables	

– The	
 null	
 character	
 is	
 appended	
 at	
 the	
 end	
 automa2cally	

•  Func2on	
 strncpy()	
 copies	
 the	
 string	
 by	
 specifying	
 the	

number	
 n	
 of	
 characters	
 to	
 copy	

– e.g.,	
 strncpy(dest,	
 src,	
 n);	
 dest[n]	
 =	
 ‘\0’	

– If	
 source	
 string	
 is	
 longer	
 than	
 the	
 des2na2on	
 string,	
 the	

overflow	
 characters	
 are	
 discarded	
 automa2cally	

– You	
 have	
 to	
 place	
 the	
 null	
 character	
 manually	

	

10
/2
1/
13
	

Buffer	
 Overflow	

Return	
 Address	
 Smashing	

•  The	
 Unix	
 fingerd()	
 system	
 call,	
 which	
 runs	

as	
 root	
 (it	
 needs	
 to	
 access	
 sensi2ve	
 files),	

used	
 to	
 be	
 vulnerable	
 to	
 buffer	
 overflow	

•  Write	
 malicious	
 code	
 into	
 buffer	
 and	

overwrite	
 return	
 address	
 to	
 point	
 	

to	
 the	
 malicious	
 code	

•  When	
 return	
 address	
 is	
 reached,	
 it	
 will	
 now	

execute	
 the	
 malicious	
 code	
 with	
 the	
 full	

rights	
 and	
 privileges	
 of	
 root	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

97	

void	
 fingerd	
 (…)	
 {	

	
 char	
 buf[80];	

	
 …	

	
 get(buf);	

	
 …	

}	

cu
rr
en

t	

fr
am

e	

	
 p
re
vi
ou

s	

fr
am

es
	

f()	
 arguments	
 	

buffer	

	

	

local	
 variables	

program	
 code	
 program	
 code	

next	
 loca2on	

padding	
 aG
ac
ke
r’s
	
 in
pu

t	

malicious	
 code	

return	
 address	

f()	
 arguments	
 	

EI
P	

return	
 address	
 EI
P	

Unix	
 Shell	
 Command	

Substitution	

•  The	
 Unix	
 shell	
 enables	
 a	
 command	
 argument	
 to	
 be	
 obtained	
 from	

the	
 standard	
 output	
 of	
 another	

•  This	
 feature	
 is	
 called	
 command	
 subs2tu2on	

•  When	
 parsing	
 command	
 line,	
 the	
 shell	
 replaces	
 the	
 output	
 of	
 a	

command	
 between	
 back	
 quotes	
 with	
 the	
 output	
 of	
 the	
 command	

•  Example:	

–  File	
 name.txt	
 contains	
 string	
 farasi	

–  The	
 following	
 two	
 commands	
 are	
 equivalent	

–  	
 finger	
 `cat	
 name.txt`	

–  finger	
 farasi	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

98	

Shellcode	
 Injection	

•  An	
 exploit	
 	
 takes	
 control	
 of	
 aGacked	
 computer	
 so	
 injects	
 code	
 	
 to	

“spawn	
 a	
 shell”	
 or	
 “shellcode”	

•  A	
 shellcode	
 is:	

•  Code	
 assembled	
 in	
 the	
 CPU’s	
 na2ve	
 instruc2on	
 set	
 (e.g.	
 x86	
 ,	
 	
 x86-­‐64,	
 arm,	

sparc,	
 	
 risc,	
 etc.)	

•  Injected	
 as	
 a	
 part	
 of	
 the	
 buffer	
 that	
 is	
 overflowed.	

•  We	
 inject	
 the	
 code	
 directly	
 into	
 the	
 buffer	
 that	
 we	
 send	
 for	
 the	
 aGack	

•  A	
 buffer	
 containing	
 shellcode	
 is	
 a	
 “payload”	

10
/2
1/
13
	

99	

Bu
ffe

r	
 O
ve
rfl
ow

	

Buffer	
 Over<low	
 Mitigation	

• We	
 know	
 how	
 a	
 buffer	
 overflow	
 happens,	
 but	
 why	
 does	
 it	

happen?	

•  This	
 problem	
 could	
 not	
 occur	
 in	
 Java;	
 it	
 is	
 a	
 C	
 problem	

–  In	
 Java,	
 objects	
 are	
 allocated	
 dynamically	
 on	
 the	
 heap	
 (except	
 ints,	
 etc.)	

–  Also	
 cannot	
 do	
 pointer	
 arithme2c	
 in	
 Java	

–  In	
 C,	
 however,	
 you	
 can	
 declare	
 things	
 directly	
 on	
 the	
 stack	

•  One	
 solu2on	
 is	
 to	
 make	
 the	
 buffer	
 dynamically	
 allocated	

•  Another	
 (OS)	
 problem	
 is	
 that	
 fingerd	
 had	
 to	
 run	
 as	
 root	
 	

–  Just	
 get	
 rid	
 of	
 fingerd’s	
 need	
 for	
 root	
 access	
 (solu2on	
 eventually	
 used)	

–  The	
 program	
 needed	
 access	
 to	
 a	
 file	
 that	
 had	
 sensi2ve	
 informa2on	
 in	
 it	

–  A	
 new	
 world-­‐readable	
 file	
 was	
 created	
 with	
 the	
 informa2on	
 required	
 by	

fingerd	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

100	

Stack-­‐based	
 buffer	
 over<low	

detection	
 using	
 a	
 random	
 canary	

•  The	
 canary	
 is	
 placed	
 in	
 the	
 stack	
 prior	
 to	
 the	
 return	
 address,	
 so	
 that	
 any	

aGempt	
 to	
 over-­‐write	
 the	
 return	
 address	
 also	
 over-­‐writes	
 the	
 canary.	

10
/2
1/
13
	

Bu
ffe

r	
 O
ve
rfl
ow

	

101	

Buffer	
 Other	
 local	

variables	

Canary	

(random)	

Return	

address	

Other	
 data	

Buffer	

Corrupt	

return	

address	

AGack	
 code	

Normal	
 (safe)	
 stack	
 configura2on:	

Buffer	
 overflow	
 aGack	
 aGempt:	

Overflow	
 data	
 x	

