590.05 Lecture 4: OS

aaaaaaaaaaa




Previous lecture

* Security properties
* Confidentiality
* Integrity
= Availability
* Assurance
* Authentication
* Anonymous

* Tools for security

* Security principles




Today

* More security property: Accountability

* OS security
* File system security
* Buffer Overflow




Accountability and Freedom

Butler Lampson
Microsoft
September 26, 2005




Real-World Security

* |t’s about risk, locks, and deterrence.
Risk management: COSt of security < expected loss

Perfect security costs way too much
Locks good enough that bad guys break in rarely

Bad guys get caught and punished enough to be deterred, so poli
courts must be good enough.

Can recover from damage at an acceptable cost.
* Internet security similar, but

little accountability
Can’t identify the bad guys, so can’t deter them




How Much Security

 Security is costly—buy only what you need
You pay mainly in inconvenience
If there’s no punishment, you pay a lot

» People do behave this way
* We don't tell them this—a big mistake

» The best is the enemy of the good

Perfect security is the worst enemy of real securit
- Feasible security

Costs less than the value it protects

Simple enough for users to manage
Simple enough for vendors to implement




Causes of Security Problems

- Exploitable bugs

* Bad configuration

TCB: Everything that security depends on
Hardware, software, and configuration

Does formal policy say what | mean?
Can | understand it? Can | manage it?

- Why least privilege doesn’t work
Too complicated, can’'t manage it

The unavoidable price of reliability is simplicity
—Hoare




Defensive strategies

- Locks: Control the bad guys

Coarse: |solate—keep everybody out
Medium: Exclude—keep the bad guys out
Fine: Restrict—Keep them from doing damage

Recover—Undo the damage

- Deterrence: Catch bad guys, punish them
Auditing, police, courts or other penalties




The Access Control Model

1. lIsolation Boundary to prevent attacks outside
access-controlled channels

2. Access Control for channel traffic
3. Policy management

Do ‘ Reference ‘

Principal monitor Object
/‘ Guard
1. Isolation boundary
2. Access control @
3. Policy/




|solation

e | am isolated if anything that goes wrong is my fault
— Actually, my program’s fault

2

- Attacks on:

Program
Isolation
Policy

Program

Boundary
Creator Policy

Services




Access Control Mechanisms:
The Gold Standard

°/Authenticate

Mainly people, but also channels, servers, programs
(encryption implements channels, so key is a principal)

-‘ﬁuthorize access: Who is trusted with a resour
mcipals or resources, to simplify management

Can define by a property, e.g. “type-safe” or “safe for scripting’

-r&udfﬂWho did what when?
 Lock = Authenticate + Authorize rincipau: |“n‘if:;ﬁ2‘:e|

- Deter = Authenticate + Audit sy ‘
2. Access control @
3./

principals: Who made a request

Policy



Making Isolation Work

* |solation is imperfect: Can’t get rid of bugs
TCB = 10-50 M lines of code
Customers want features more than correctness

* |nstead, don't tickle them.
- How? Reject bad inputs

Code: don’t run or restrict severely

Communication: reject or restrict severely
Especially web sites

Data: don’t send; don’t accept if complex




Accountability

- Can’t identify bad guys, so can’t deter them

* Fix? End nodes enforce accountability
Refuse messages that aren’t accountable enough

or strongly isolate those messages
Senders are accountable if you can punish them

All trust is local

* Need an ecosystem for
Senders becoming accountable
Receivers demanding accountability
Third party intermediaries

* To stop DDOS attacks, ISPs must play




Enforcing Accountability

* Not being accountable enough means end nodes will reject
inputs

Application execution is restricted or prohibited

Communication is restricted or prohibited
Information is not shared or accepted

Access to devices or networks is restricted or prohibited




For Accountability To Work

« Senders must be able to make themselves accountable

This means pledging something of value
Friendship
Reputation
Money

» Receivers must be able to check accountability
Specify what is accountable enough
Verify sender’s evidence of accountability




Accountability vs. Access Control

- “In principle” there is no difference
but

» Accountability is about punishment, not locks
Hence audit is critical

» Accountability is very coarse-grained




The Accountability Ecosystem

|dentity, reputation, and indirection services
Mechanisms to establish trust relationships
Person to person and person to organization
A flexible, simple user model for identity
Stronger user authentication
Smart card, cell phone, biometrics
» Application identity: signing, reputation




Accountable Internet Access

- Just enough to block DDoS attacks
* Need ISPs to play. Why should they?

Servers demand it; clients don’t get locked out
Regulation?

« A server asks its ISP to block some IP addresse

* |ISPs propagate such requests to peers or client

Probably must be based on IP address

Perhaps some signing scheme to traverse unreliable
intermediaries?

» High priority packets can get through

18




Accountability vs

» Partition world into two parts:
Green Safer/accountable
Red Less safe/unaccountable

- Two aspects, mostly orthogonal
User Experience

Isolation mechanism

Separate hardware with air gap
VM
Process isolation

. Freedom




Without R|G: Today

Less trustworthy More trustworthy
Less accountable More accountable
entities entities
(N >> m)
N attacks/yr m attacks/yr

Entities
- Programs Total: N+m attacks/yr on all assets
- Network hosts

- Administrators




With R|G

Less trustworthy
Less accountable More trustworthy
- More accountable
Snies entities

N attacks/yr (N> m) m attacks/y

Entities
- Programs N attacks/yr on less m attacks/yr on more { J
- Network hosts valuable assets valuable assets

- Administrators




Must Get Configuration Right

e Keep valuable stuff out of red
e Keep hostile agents out of green

Less trustworthy More trustworthy
Less accountable More accountable

entities \ entities

Valuable
Asset




Why R|G?

* Problems:
Any OS will always be exploitable
The richer the OS, the more bugs
Need internet access to get work done, have fun
The internet is full of bad guys

+ Solution: Isolated work environments:
Green: important assets, only talk to good guys

Don’ t tickle the bugs, by restricting inputs

Red: less important assets, talk to anybody
Blow away broken systems

« Good guys: more trustworthy / accountable
Bad guys: less trustworthy or less accountable




Configuring Green

» Green = locked down = only whitelist inputs

« Requires professional management
Few users can make these decisions
Avoid “click OK to proceed”

- To escape, use Red
Today almost all machines are Red




R|G User Model Dilemma

- People don’'t want complete isolation

They want to:
Cut/paste, drag/drop
Share parts of the file system
Share the screen
Administer one machine, not multiple

- But more integration can weaken isolation
Add bugs
Compromise security




Data Transfer

+ Mediates data transfer between machines
Drag / drop, Cut / paste, Shared folders

* Problems
Red — : Malware entering
— Red . Information leaking
+ Possible policy
Allowed transfers (configurable). Examples:

No transfer of “.exe” from Rto G
Only transfer ASCII text from R to G

Non-spoofable user intent; warning dialogs
Auditing
Synchronous virus checker; third party hooks, ...




Where Should Email/IM Run??

- As productivity applications, they must be well
integrated in the work environment (green)

* Threats—A tunnel from the bad guys
Executable attachments
Exploits of complicated data formats

» Choices
Run two copies, one in Green and one in Red

Run in Green and mitigate threats

Green platform does not execute arbitrary programs
Green apps are conservative in the file formats they accept

Route messages to appropriate machine

27




R|G and Enterprise Networks

e Red and green

y o networks are defined
@afm oy as today:
— IPSEC
— Guest firewall
— Proxy settings
SMS, AD, ema, file o
LTl e The VMM can act as a
router

— E.g. red only talks to the
proxy

28



Summary

+ Security is about risk management
Cost of security < expected loss

 Security relies on deterrence more than locks
Deterrence requires the threat of punishment
This requires accountability

- Accountability needs an ecosystem
Senders becoming accountable
Receivers verifying accountability

 Accountability limits freedom

Beat this by partitioning: red |
Don’t tickle bugs in green, dispose of red




Today

* More security property: Accountability

* OS security
* Buffer Overflow




Buffer Overflow
Attacks




File system Security




General Principles

* Files and folders are managed by the * DAG (Linux)
operating system

* Applications, including shells, access files
through an API

* Access control entry (ACE)

« Allow/deny a certain type of access to a
file/folder by user/group

* Access control list (ACL)
* Collection of ACEs for a file/folder

* Afile handle provides an opaque identifier
for a file/folder

* File operations

*  Open file: returns file handle

* Read/write/execute file

* Close file: invalidates file handle
* Hierarchical file organization

* Tree (Windows)




Discretionary Access Control
(DAC)

* Users can protect what they own
The owner may grant access to others
The owner may define the type of access (read/write/execute) given to others

* DAC is the standard model used in operating systems

* Mandatory Access Control (MAC)
Alternative model not covered in this lecture
Multiple levels of security for users and documents
Read down and write up principles




Closed vs. Open Policy

Closed policy Open Policy

Deny Tom read access to “foo”

* Also called “default secure”

Give Tom read access to “foo” Deny Bob r/w access to “bar”

Give Bob r/w access to “bar Tom: | would like to read “foo”

Tom: | would like to read “foo” e Access denied

* Access allowed Tom: | would like to read “bar”

)

e Access allowed

Tom: | would like to read “bar’

* Access denied




Closed Policy with Negative
Authorizations and Deny Priority

Give Tom r/w access to “bar”

Deny Tom write access to “bar”

Tom: | would like to read “bar”
Access allowed

Tom: | would like to write “bar”

Access denied

Policy is used by Windows to manage access contr
to the file system




Access Control Entries and
Lists

* An Access Control List (ACL) for a resource (e.g., a file or
folder) is a sorted list of zero or more Access Control

Entries (ACEs)

* An ACE refers specifies that a certain set of accesses (e.g.,
read, execute and write) to the resources is allowed or

denied for a user or group

* Examples of ACEs for folder “Bob’s CS167 Grades”
Bob; Read; Allow
TAs; Read; Allow
TWD; Read, Write; Allow
Bob; Write; Deny
TAs; Write; Allow




Linux vs. Windows

* Linux requested
Allow-only ACEs Permissions set on a folder usually
Access to file depends on ACL of file and propagated to descendants (inheritance
of all its ancestor folders System keeps track of inherited ACE’s

Start at root of file system
Traverse path of folders

Each folder must have execute (cd)
permission

Different paths to same file not
equivalent

File’s ACL must allow requested access
* Windows
Allow and deny ACEs

By default, deny ACEs precede allow
ones

Access to file depends only on file’s ACL
ACLs of ancestors ignored when access is



Linux File Access Control

* File Access Control for:
* Files
* Directories

* Therefore...
\dev\ : devices
\mnt\ : mounted file systems
What else? Sockets, pipes, symbolic links...




Linux File System

* Tree of directories (folders)
* Each directory has links to zero or more files or directories
e Hard link

*  From a directory to a file

*  The same file can have hard links from multiple directories, each with its own filename, but all sharing owne
group, and permissions

* File deleted when no more hard links to it
* Symbolic link (symlink)
*  From a directory to a target file or directory
« Stores path to target, which is traversed for each access
*  The same file or directory can have multiple symlinks to it
*  Removal of symlink does not affect target
*  Removal of target invalidates (but not removes) symlinks to it

*  Analogue of Windows shortcut or Mac OS alias




Unix Permissions

* Standard for all UNIXes

* Every file is owned by a user and has an associated
group

* Permissions often displayed in compact 10-characte
notation

* To see permissions, use |s —|

jk@sphere:~/test$ 1s -1

total O

-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 filel
-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2 [41J




Permissions Examples (Regular Files)

-rW-r—r-- read/write for owner, read-only
for everyone else

-rW-r----- read/write for owner, read-only
for group, forbidden to others

-FWX------ read/write/execute for owner,
forbidden to everyone else

-r--r--r-- read-only to everyone, including
owner

-rWXIWXrwx read/write/execute to everyone




Permissions for Directories

* Permissions bits interpreted differently for directories

* Read bit allows listing names of files in directory, but not thei
properties like size and permissions

* Write bit allows creating and deleting files within the
directory

* Execute bit allows entering the directory and getting
properties of files in the directory

* Lines for directoriesin | s — | output begin with d, as below

jk@sphere:~/test$ 1s -1
Total 4 (43J
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dirl
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 filel



Permissions Examples
(Directories)

drwxr-xr-x

all can enter and list the directory,
only owner can add/delete files

drwxrwx--- full access to owner and group,
forbidden to others

drwx--x--- full access to owner, group can
access known filenames in
directory, forbidden to others

-rWXIrWXrwx full access to everyone




File Sharing Challenge

Creating and modifying groups requires root
Given a directory with permissions drwx------ x and afilein it
* Give permission to write the file to userl, user2, user3, ... without creating a new group
« Selectively revoke a user
Solution 1
* Give file write permission for everyone
* Create different random hard links: user1-23421, user2-56784, ...
Problem! Selectively removing access: hard link can be copied
Solution 2
* Create random symbolic links
Problem! Symbolic link tells where it points




Working Graphically with Permissions

* Several Linux GUIs exist for
displaying and changing
permissions

* In KDE’s file manager
Konqueror, right-click on a file

and choose Properties, and
click on the Permissions tab:

* Changes can be made here
(more about changes later)

Properties for file2 - Kongqueror

| General | Permissions

—Access Permissions

er. | Can Read & Write | ®]

Group: \ Can Read l 3J

Others: [ Forbidden K J

[T Is executable

\ Advanced Permissions... |

—Ownership

User: jk

Group: | ugrad |||3|




Special Permission Bits

* Three other permission bits exist
* Set-user-1D (“suid” or “setuid”) bit
* Set-group-1D (“sgid” or “setgid”) bit
* Sticky bit




Set-user-1D

* Set-user-ID (“suid” or “setuid”) bit
On executable files, causes the program to run as file owner regardless
of who runs it

lgnored for everything else

In 10-character display, replaces the 4t character (X or -) with s (or S'i
not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid

-rwSr--r--: setuid, but not executable - not useful




Set-group-ID

* Set-group-ID (“sgid” or “setgid”) bit
On executable files, causes the program to run with the file’s group,
regardless of whether the user who runs it is in that group

On directories, causes files created within the directory to have the
same group as the directory, useful for directories shared by multiple
users with different default groups

lgnored for everything else

In 10-character display, replaces 7t character (x or -) with s (or S if no
also executable)

-rwxr-sr-x: setgid file, executable by all
drwxrwsr-x: setgid directory; files within will have group of directory
-rw-r-Sr--: setgid file, but not executable - not useful




Sticky Bit

* On directories, prevents users from deleting or renaming file
they do not own

* lgnored for everything else

* In 10-character display, replaces 10t character (X or -) with t
(or T if not also executable)

drwxrwxrwi: sticky bit set, full access for everyone
drwxrwx--T: sticky bit set, full access by user/group
drwxr--r-T: sticky, full owner access, others can read (useless)




Working Graphically with Special Bits

* Special permission bits can also be displayed and changed
through a GUI

* In Konqueror’s Permissions window, click Advanced
Permissions:

* Changes can be made here (more about changes later)

Advanced Penmissions - Kongqueror

—Access Permissions

Class Read Write Exec  Special
User X (8 (X [T} SetUID
Group (X (X (R| Set GID
Others (X (X [T Sticky

O
O

( /| Cancel |




Root

* “root” account is a super-user account, like
Administrator on Windows

* Multiple roots possible
* File permissions do not restrict root

* This is dangerous, but necessary, and OK with good
practices




Becoming Root

* Su

*  Changes home directory, PATH, and shell to that of root, but doesn’t touch most of
environment and doesn’t run login scripts

[ ] Su =
* Logs in as root just as if root had done so normally

* sudo <command>

* Run just one command as root
* su[-] <user>
*  Become another non-root user

* Root does not require to enter password




Changing Permissions

* Permissions are changed with chmod or through a GUI like
Konqueror

* Only the file owner or root can change permissions

* If a user owns a file, the user can use chgrp to set its group t
any group of which the user is a member

* root can change file ownership with chown (and can
optionally change group in the same command)

* chown, chmod, and chgrp can take the -R option to recur
through subdirectories




Examples of Changing
Permissions

chown -R root dirl Changes ownership of dirl and
everything within it to root

chmod g+w,o-rwx filel file2 Adds group write permission to
filel and file2, denying all access
to others

chmod -R g=rwX dirl Adds group read/write permission to

dirl and everything within it, and grou
execute permission on files or
directories where someone has execut
permission

chgrp testgrp filel Sets filel’s group to testgrp, if th
user is a member of that group

chmod u+s filel Sets the setuid bit on filel.
(Doesn’t change execute bit.)




Octal Notation

* Previous slide’s syntax is nice for simple cases, but
bad for complex changes

Alternative is octal notation, i.e., three or four digits from
to 7
* Digits from left (most significant) to right(least
significant):
[special bits][user bits][group bits][other bits]
* Special bit digit =
(4 if setuid) + (2 if setgid) + (1 if sticky)
* All other digits =
(4 if readable) + (2 if writable) + (1 if executable)




Octal Notation Examples

644 or 0644

read/write for owner, read-only for everyone else

775 0r 0775

read/write/execute for owner and group, read/execute fo
others

640 or 0640

read/write for owner, read-only for group, forbidden to
others

2775

same as 775, plus setgid (useful for directories)

777 or 0777

read/write/execute to everyone (dangerous!)

1777

same as 777, plus sticky bit




Limitations of Unix Permissions

* Unix permissions are not perfect
Groups are restrictive
Limitations on file creation

* Linux optionally uses POSIX ACLs
Builds on top of traditional Unix permissions

Several users and groups can be named in ACLs, each with
different permissions

Allows for finer-grained access control

* Each ACL is of the form type:[name]:.rwx
Setuid, setgid, and sticky bits are outside the ACL system




Minimal ACLs

* |n a file with minimal ACLs, name does not appear, and the
ACLs with type “user” and “group” correspond to Unix user
and group permissions, respectively.

When name is omitted from a “user” type ACL entry, it applies to the

file owner.
4 -
¥ &
f S o{é’o
i &
Minimal
Access Control List rw—- | r== | ——-
USsSer: i rw— -4 * [
group: :r—— =
other::——— -




ACL Commands

* ACLs are read with the getfacl command and set with the
setfacl command.

* Changing the ACLs corresponding to Unix permissions shows
up in Is -l output, and changing the Unix permissions with
chmod changes those ACLs.

* Example of getfacl:

jimmyQ@techhouse:~/test$ 1ls -1

total 4

drwxr-x--- 2 jimmy Jjimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ getfacl dir

# file: dir

# owner: jimmy

# group: jimmy

user: :rwx

group: :r-x

other: :---




More ACL Command Examples

jimmy@techhouse:~/test$S setfacl -m group::rwx dir
jimmy@techhouse:~/test$ 1ls -1

total 4
drwxrwx--- 2 Jjimmy Jjimmy 4096 2005-12-02 04:13 dir

jimmy@techhouse:~/test$S chmod 755 dir
jimmy@techhouse:~/test$S getfacl dir

# file: dir

# owner: jimmy

# group: jimmy

user: :rwx

group: :r-x

other: :r-x




Extended ACLs

ACLs that say more than Unix permissions are extended ACLs

Specific users and groups can be named and given permissions via
ACLs, which fall under the group class (even for for ACLs naming user
and not groups)

*  With extended ACLs, mapping to and from Unix permissions i
a bit complicated.

* User and other classes map directly to the corresponding Uni
permission bits

* Group class contains named users and groups as well as
owning group permissions. How to map?




Mask-type ACLs

5
¥ & &
f R «
Q) &)
Extended
Access Control List rw- | zw— | ——

userIirw-— --

masked user: joe:irw-

entries group::ir——
mask: :rw— =
other::—— =

* Unix group permissions now map to an ACL of type “mask”, which is a
upper bound on permissions for all group class ACLs.

* All group class ACLs are logically and-ed with the mask before taking
effect

® rW-—Xrw- & r-x—x--- = r----x--
* The ACL of type “group” with no name still refers to the Unix owning
group

*  Mask ACLs are created automatically with the necessary bits such that
they do not restrict the other ACLs at all, but this can be changed




Extended ACL Example

jimmy@techhouse:~/test$ 1ls -1

total 4

drwxr-xr-x 2 Jjimmy Jjimmy 4096 2005-12-02 04:13 dir
jimmy@techhouse:~/test$ setfacl -m user:joe:rwx dir
jimmy@techhouse:~/testS getfacl dir

# file: dir

# owner: jimmy

# group: jimmy

user: :rwx

user: joe:rwx

group: :r-x

mask: :rwx

other: :r-x

jimmy@techhouse:~/test$ 1ls -1
total 8
drwxrwxr-x+ 2 Jjimmy Jjimmy 4096 2005-12-02 04:13 dir




Extended ACL Example
Explained

* The preceding slide grants the named user joe read, write, and
execute access to dir.

dir now has extended rather than minimal ACLs.

* The mask is set to rwx, the union of the two group class ACLs
(named user joe and the owning group).

* Inls -1 output, the group permission bits show the mask, not
the owning group ACL

Effective owning group permissions are the logical and of the
owning group ACL and the mask, which still equals r-x.

This could reduce the effective owning group permissions if the
mask is changed to be more restrictive.

* The +inthe 1s -1 output after the permission bits indicates
that there are extended ACLs, which can be viewed with
getfacl.




Default ACLs

* The kind of ACLs we've mentioned so far are access ACLs.

* Adirectory can have an additional set of ACLs, called default

ACLs, which are inherited by files and subdirectories created
within that directory.

Subdirectories inherit the parent directory's default ACLs as
both their default and their access ACLs.

Files inherit the parent directory's default ACLs only as their
access ACLs, since they have no default ACLs.

* The inherited permissions for the user, group, and other classes
are logically and-ed with the traditional Unix permissions
specified to the file creation procedure.




Default ACL Example

jimmy@techhouse:~/testS setfacl -d -m group:webmaster:rwx
dir

jimmy@techhouse:~/test$ getfacl dir
# file: dir

# owner: jimmy

# group: jimmy

user: :rwx

user:joe:rwx

group: :r-x

mask: :rwx

other: :r-x

default:user: :rwx
default:group::r-x
default:group:webmaster:rwx
default:mask: :rwx
default:other: :r-x

Note how this starts the default ACLs out as equal to the existing access ACLs plus the
specified changes.




Default ACL Example Continued

jimmyQ@techhouse:~/test$ mkdir dir/subdir
jimmy@techhouse:~/test$S getfacl dir/subdir
# file: dir/subdir

# owner: jimmy

# group: jimmy

user: :rwx

group: :r-x

group :webmaster:rwx

mask: :rwx

other: :r-x

default:user: :rwx

default:group: :r-x
default:group:webmaster:rwx
default:mask: :rwx

default:other: :r-x

The default ACLs from the parent directory are both the access and default [ 68 J
ACLs for this directory. Group webmaster has full access.




Default ACL Example Continued

jimmy@techhouse:~/test$ touch dir/file
jimmy@techhouse:~/test$ 1ls -1 dir/file
—rw-rw-r—-—+ 1 Jjimmy jimmy O 2005-12-02 11:36 dir/file
jimmy@techhouse:~/test$S getfacl dir/file

# file: dir/file

# owner: Jjimmy

# group: Jimmy

user: :rw-

group: :r-x fteffective:r—--
group:webmaster: rwx fteffective:rw-
mask::rw-

other::r—-

The default ACLs from the parent directory are the basis for the access
ACLs on this file, but since touch creates files without any execute bit set,
the user and other classes, and the group class as well via the mask ACL,
have their execute bits removed to match.




NTFS Permissions
_ NTFS Partition

User 1

Read |
ACE

Group 1 —

Full Control
ACE

. Full Control\
}@ﬁ o

Group 1




Basic NTFS Permissions

NHESPemission
Read

Folders

Open files and subfolders

Open files

List Folder Contents

List contents of folder, traverse
folder to open subfolders

Not applicable

Read and Execute

Not applicable

Open files, execute

programs
Write Create subfolders and add files Modify files
Modify Allthe above + delete Allthe above
Full Control All the above + All the above +

change permissions
and take ownership,
delete subfolders

change permissions
and take ownership /! J




Multiple NTFS permissions

NTFS permissions are cumulative
File permissions override folder permissions
Deny overrides Allow

Read/Writ
Group B i% ead/Write \FolderA

User

'/F|Ie1




NTEFS: permission inheritance

Permlsswn Inheritance

ﬁn’ Rner> Folder A
Access allowed for File 1
File1

Block of Inheritance |

%ﬂ' R“m> Folder A

Access denied for File 1

File1




NTEFS File Permissions

* Explicit: set by the owner for each user/group.

* Inherited: dynamically inherited from the explicit |
\
permissions of ancestor folders.
* Effective: obtained by combining the explicit and Do -

inherited permission.

: A
Determining effective permissions: effeCtiE
° P Rules |pummd é
m By default, a user/group has no
privileges
= Explicit permissions override explicit
conflicting inherited permissions. ﬁ
m Denied permissions override ﬂ\ \’
conflicting allowed permissions. \ (@4\

e )
—




Access Control Algorithm

* The DACL of a file or folder is a sorted list of ACEs
Local ACEs precede inherited ACEs
ACEs inherited from folder F precede those inherited from parent of F

Among those with same source, Deny ACEs precede Allow ACEs

* Algorithm for granting access request (e.g., read and execute):
ACEs in the DACL are examined in order
Does the ACE refer to the user or a group containing the user?
If so, do any of the accesses in the ACE match those of the request?

If so, what type of ACE is it?
Deny: return ACCESS_DENIED

Allow: grant the specified accesses and if there are no remaining accesses to gran
return ACCESS_ALLOWED

If we reach the end of the DACL and there are remaining requested accesses
that have not been granted yet, return ACCESS DENIED




Example

= Customers Group || NTES
Write Folder1
_% = Marketing Group
. Read Folder1 <ﬁ, ﬁ>
Customers Group \:deﬂ
m Customers Group ‘2
2 Read Folder1 — File1

User1 / JX\ m Marketing Group

Write Folder2
= Customers Group 3 % . Folder2 &\

Modify Folder1

|
 File2 should only be = _ File2

accessible to
Marketing Group, and
only for read access

Marketing Group




NTFS move vs. copy in same
volume

Move Copy
" —

NTFS E:\

o« _»

* If you move a file or a folder - If you copy a file or a folder
inside the same volume your inside the same volume you
permission will be the same permission will be the same
of the source folder of the destination folder ( 77 J




NTFS move vs. copy across

volumes

i
a8 e

NTFS E:\

-_—

* If you copy or move a file or a folder on different volumes
your permission will be the same of the destination folder

78




Setting File Permissions in Win XP

Folder Options

General | View | File Types | Offline Files|

Folder views

File Modifica Visualizza  Preferiti M

! ) Connetti unita di rete. ..
@ Indietro ~ () [’ /' Disconnetti unita di rete. ..
Sincronizza... : - -
Indirizzo |<e® C:\ You can apply the view (such as Details or Tiles) that

Opzioni cartella. .. —
Lo

you are using for this folder to all folders.

| ApplytodllFolders | | ResstalFolders |

NTFS permissions in

Windows XP Pro are disabled by favoricod solleros il
(3 Show hidden files and folders -~
d efa u |t [[] Hide extensions for known file types 0
[] Hide protected operating system files [Recommended)
1 1 [] Launch folder windows in a separate process
U Sl ng FOIder Optlons"' frO A Remember each folder's view settings
TOO I S MmMenu | ns | d e Wi 1] d OWS [[] Restore previous folder windows at logon
. . . [[] Show Control Panel in My Computer
Explorer IS POSSI ble to activate Show encrypted or compressed NTFS files in color
. . . . Show pop-up description for folder and desktop items
NTFS permission in windows by W Use simple file shaiing (Recommended) ] J
. . ° v
unchecking Use simple file < | 3

sharing

[ Restore Defaults ]

[ 0K ][ Cancel ][ Apply ]




Windows Tools

Q- © 3 = rois | [ v B

* Access control management |- oo e = s

tools provide detailed ey = s

information and controls, s e — ]

. . _A:::‘:m Generol | Sharing | Securty | Customize
across multiple dialogs. o —
. . * 3 :mm Bovsren ddbrec Security Settings for TreeMapTest

* Focus on single file/folders. ’
* Itis challenging for an

inexperienced user, or a
system administrator dealing
with very large file structures,
to gain a global view of
permissions within the file

system

¢

%7



Treemap Access Control Evaluator

\Donnmu Settings\All Users\Home

Permissions View Options

& ok Alow/Deny Propagaton Flags
:Hyl)ocmems
Ciosomes i e M oo
xMyMusc

- # My Pictures
Choose Uses/Group: Records b
Aice v Reportodt

§III§¥II§

@ Expiicit Permissions.

N 0 Alexander Heitzmann, Bernardo Palazzi, Charalampos [ 81 J
Sponsors: -@;"*BN ATRE ‘5C°mw_ﬂ,z: Papamanthou, Roberto Tamassia. Effective Visualization of File
System Access Control, VizSEC 2008




TrACE Highlights

* At a glance, determine th
explicit, inherited, and

E’l effective permissions of
= files and folders.
0%‘5“”” - * Understand access contr
. relationships between
= files and their ancestors
* Quickly evaluate large
directory structures and
% find problem areas
% * Layout based on treemaps

on
|
Y




What is a Treemap?

* A visualization method to display large hierarchical data
structures (trees)

* Layout based on nested rectangles.

* Treemaps were introduced by Ben Shneiderman in “Tree
visualization with tree-maps: 2-d space-filling approach”;
TOG 1991

A: 110




M TrACE

A | Options

Permissions View Options

’ C:\Documents and S} [Browse

Choose User/Group:

’Alex Heitzmann N ‘

Style Options

Choose Color Scheme:

Full Spectrum

Zoom

(o ]

Legend
Nohccess
ReadOnly

WritzOnly
ReadAndWrite
ExecuteOnly

W Inherited Permissions
@ Explicit Permissions

# rtWorkDocs
= TreeMapTest
[# Colors
[# Patterns
[= Shapes
# Circle
&
¥ Square
[# Triangle
Desktop.ini

C:\Documents and Settings)\Alex Heitzmann|My Documents\My Projects\TreeMapTest\Shapes\Rectangle

Inherited

True
True

Privilege

Write, Synchronize
Read, Synchronize

Allow/Deny Propagation Flags

Allow ContainerInherit, ObjectInherit
Allow ContainerInherit, ObjectInherit

i o
|(|r=3.|..o| |r=5.1..0| |r=7.L.0|

[Equilaten.q |Isosoeles._l|




W TTACE AE

. ™ ugs \ : . .
A Options B riorkDocs A C:\Documents and Settings\Alex Keitzmann\My Documents\My Projects\TreeMapTest\Shapes\Rectangle
= TreeMapTest
Permissions View Options [# Colors Inherited Privilege Allow/Deny Propagation Flags
[# Patterns : = T =
. . - False Write Deny ContzinerInherit, ObjectInherit
’ C:\Documents and SHBW‘SE] = Swga?:fcle True Write, Synchronize Allow ContainerInherit, ObjectInherit
@ Rectangle 0 True Read, Synchronize Allow ContazinerInherit, ObjectInherit
Choose User/Group: [# Sguare
\AJex Heitzmann v ‘ nwzlf‘?ﬂn nTirri\iangle 3

Style Options

Choose Color Scheme: C R AR R A e e
k } U | 1 1 :

Baseline v

Zoom

Lo ]

Legend
NoAccess
ReadOnly
WritzOnly
ReadAndWrite
ExecuteOnly

Square
}mm ][7x7.ut

Triangle

|Equilateﬁ....* 'lsosoeles. -‘..L1

M Inherited Permissions
@ Explicit Permissions




Acknowledgment

*  Much of these POSIX ACL slides are adapted (and some pictures ar¢
taken) from Andreas Griinbacher’s paper POSIX Access Control List

on Linux, available online at:

http://www.suse.de/~agruen/acl/linux-acls/



What is an Exploit?

* An exploit is any input (i.e., a piece of software, an argument
string, or sequence of commands) that takes advantage of a
bug, glitch or vulnerability in order to cause an attack

* An attack is an unintended or unanticipated behavior that
occurs on computer software, hardware, or something
electronic and that brings an advantage to the attacker

(0]
—i
S~
—
N
By
o
i
3
@]
=
—
(]
>
@)
S
(V]
b
>
(an]

—
(00)
~

—




Buffer Overflow Attack

* One of the most common OS bugs is a buffer overflow

The developer fails to include code that checks whether an input
string fits into its buffer array

An input to the running process exceeds the length of the buffer
The input string overwrites a portion of the memory of the process

Causes the application to behave improperly and unexpectedly

o
—i
S~
—
N
S~
o
i
3
@]
=
—
(]
>
o
-
(V]
&=
>
(an]

* Effect of a buffer overflow

The process can operate on malicious data or execute malicious
code passed in by the attacker

If the process is executed as root, the malicious code will be
executing with root privileges




Address Space

* Every program needs to access memory in order to run

* For simplicity sake, it would be nice to allow each
process (i.e., each executing program) to act as if it
owns all of memory

* The address space model is used to accomplish this

Buffer Overflow 10/21/13

* Each process can allocate space anywhere it wants in
memory

* Most kernels manage each process’ allocation of
memory through the virtual memory model

* How the memory is managed is irrelevant to the process




Virtual Memory

Program Sees Actual Memory

(0]
—i
S~
—
N
By
o
i
3
@]
=
—
(]
>
@)
S
(V]
b
>
(an]

Mapping virtual addresses to real addresses

o
o)
o

—




Unix Address Space

High Addresses

. OXFFFF FFFF
Text: machine code of the program,

compiled from the source code Stack
Data: static program variables initialized in
the source code prior to execution

BSS (block started by symbol): static
variables that are uninitialized

Heap

Buffer Overflow 10/21/13

Heap : data dynamically generated during BSS

the execution of a process

Data

Stack: structure that grows downwards
and keeps track of the activated method Text
calls, their arguments and local variables

Low Addresses

0Ox0000 0000 .



Vulnerabilities and Attack
Method

* Vulnerability scenarios

The program has root privileges (setuid) and is launched from a
shell

The program is part of a web application

* Typical attack method
Find vulnerability

(0]
—i
S~
—
N
By
o
i
3
@]
=
—
(]
>
@)
S
(V]
b
>
(an]

Reverse engineer the program
Build the exploit

—
o)
N

—




Buffer Overtlow Attack in a
Nutshell

First described in

Aleph One. Smashing The Stack For Fun And Profit. e-zine
www.Phrack.org #49, 1996

The attacker exploits an unchecked buffer to
perform a buffer overflow attack

The ultimate goal for the attacker is getting a shell
that allows to execute arbitrary commands with
high privileges

Kinds of buffer overflow attacks:

Heap smashing
Stack smashing

o
—i
S~
—
N
By
o
i
3
@]
=
—
(]
>
@)
-
(V]
&=
>
(an]




Buffer Overflow

* Retrieves domain registration info
e e.g., domain brown.edu

Top of
Memory
OxFFFFFFFF

Bottom of
Memory
0x00000000

(0]
i
S~
i
N
By
o
—




strcpy() Vulnerability

Top of
Main(int argc, char “argv|]) Memory
/*get user_input*/ OXFFFFFFFF Stack
{ Fill - [
char 1; } Directio §
char [20]; - -
o“ H " 2
strcpy(command, “whois "); 2
strcat(command, argv|1]); \. : S
strepy(varl, argv[1]); < =
printf(varl);
system( ); N
}
is the user input
strcpy(dest, src) does not check buffer Bottom of
strcat(d, s) concatenates strings Memory

0x00000000




strcpy/() vs. strncpy()

* Function strcpy() copies the string in the second
argument into the first argument

e.g., strcpy(dest, src)

If source string > destination string, the overflow characters
may occupy the memory space used by other variables

The is appended at the end automatically

* Function strncpy() copies the string by specifying the
number n of characters to copy
e.g., strncpy(dest, src, n); dest[n] = \0’

If source string is longer than the destination string, the
overflow characters are discarded automatically

You have to place the manually

(gp]
—i
S~
—
N
S~
o
i




Return Address Smashing

void (...) {
har buf[80] ” f() arguments
char pu ; 3w
! 2 GEJ return address ;&J =
U © o . .
S local variables = malicious code
get(buf); p
- f() arguments [~ é next location
S & return address 2 £ 4di
} S © buffer ® padding
o«
* The Unix system call, which runs
as root (it needs to access sensitive files),
used to be vulnerable to buffer overflow
* Write malicious code into buffer and
overwrite return address to point
to the malicious code
* When return address is reached, it will now program code program code

execute the malicious code with the full
rights and privileges of root




Unix Shell Command
Substitution

The Unix shell enables a command argument to be obtained from
the standard output of another

This feature is called command substitution

When parsing command line, the shell replaces the output of a
command between back quotes with the output of the command

(0]
—i
S~
—
N
By
o
i
3
@]
=
—
(]
>
@)
S
(V]
b
>
(an]

Example:
File name.txt contains string farasi
The following two commands are equivalent
finger ‘cat name.txt

finger farasi

—
¥o)
(00)

—




Shellcode Injection

* An exploit takes control of attacked computer so injects code to
“spawn a shell” or “shellcode”

* A shellcode is:

Code assembled in the CPU’s native instruction set (e.g. x86 , x86-64, ar
sparc, risc, etc.)

Injected as a part of the buffer that is overflowed.

* We inject the code directly into the buffer that we send for the attac

Buffer Overflow 10/21/13

* A buffer containing shellcode is a “payload”




Buffer Overtlow Mitigation

* We know how a buffer overflow happens, but why does it
happen?

* This problem could not occur in Java; it is a C problem
In Java, objects are allocated dynamically on the heap (except ints, eta
Also cannot do pointer arithmetic in Java

In C, however, you can declare things directly on the stack

Buffer Overflow 10/21/13

* One solution is to make the buffer dynamically allocated
* Another (OS) problem is that fingerd had to run as root

Just get rid of fingerd’s need for root access (solution eventually used)
The program needed access to a file that had sensitive information in

A new world-readable file was created with the information required by

fingerd



Stack-based butfter overtlow
detection using a random canary

Normal (safe) stack configuration:

\ 4
|

>

»
A

10/21/13

Buffer overflow attack attempt:

3
o
=
—
o
p
@)
P —
9]
&=
S
@

* The canary is placed in the stack prior to the return address, so that any
attempt to over-write the return address also over-writes the canary.




