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Roadmap 

•  Previous lecture 
– Practical network security 

•  Today 
–  IP traceback 

•  Packet state based 
•  Router state based 



How to Attack : Exhausting shared 
resources 

•  Flooding traffic to exhaust the bandwidth, memory, or  CPU of 
a victim 
–  Spoof addresses to hide 

•  Passport 
–  Distributed DoS (DDoS) to hide and to maximize damage 

•  Multiple (weak) machines against (strong) victim 

L!



IP address spoofing 

•  IP source address can be spoofed 
•  Challenges 

– No accountability 
– Filters do not work well 
– Reflector attacks 



Smurf/Reflector Attack 
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Practical Network Support for IP 
Traceback  

Stefan Savage University of Washington/ 
University of California, San Diego  

David Wetherall, Anna Karlin and Tom 
Anderson University of Washington, Seattle  

 



Single-Packet IP Traceback 

Alex C. Snoeren 
 

BBN Technologies 
 

(with Craig Partridge, Tim Strayer, Christine Jones, 
Fabrice Tchakountio, Beverly Schwartz, Matthew Condell, 

Bob Clements, and Steve Kent) 
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Low-rate attacks 

•  Not all attacks are large flooding DOS attacks 
  
•  Well-placed single packet attacks 
  
•  Packets may have spoofed IP addresses 

•  How to track these attacks and find their 
origin? 
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IP Traceback 
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Logging Challenges 

•  Attack path reconstruction is difficult 
– Packet may be transformed as it moves through 

the network 

•  Full packet storage is problematic 
– Memory requirements are prohibitive at high line 

speeds (OC-192 is ~10Mpkt/sec) 

•  Extensive packet logs are a privacy risk 
– Traffic repositories may aid eavesdroppers 
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Single-Packet Traceback: Goals 

•  Trace a single IP packet back to source 
– Asymmetric attacks (e.g., Fraggle, Teardrop,  

ping-of-death) 
 
•  Minimal cost (resource usage) 

One solution: Source Path Isolation Engine (SPIE) 
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SPIE Architecture 
•  DGA: Data Generation Agent 

–  computes and stores digests of each packet on forwarding path. 
–  Deploy 1 DGA per router 

•  SCAR: SPIE Collection and Reduction agent 
–  Long term storage for needed packet digests 
–  Assembles attack graph for local topology 

•  STM: SPIE Traceback Manager 
–  Interfaces with IDS 
–  Verifies integrity and authenticity of Traceback call 
–  Sends requests to SCAR for local graphs 
–  Assembles attack graph from SCAR input 
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Data Generation Agents 

 
•  Compute “packet digest” 
•  Store in Bloom filter 
•  Flush filter periodically 
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Packet Digests 

•  Compute hash(p) 
–  Invariant fields of p only 
–  28 bytes hash input, 0.00092% WAN collision rate 
– Fixed sized hash output, n-bits 

•  Compute k independent digests 
–  Increased robustness 
– Reduced collisions, reduced false positive rate 
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Hash input: Invariant Content 
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Hashing Properties 

•  Each hash function 
– Uniform distribution of input -> output 
     H1(x) = H1(y) for some x,y -> unlikely 
 

•  Use k independent hash functions 
– Collisions among k functions independent 
– H1(x) = H2(y) for some x,y -> unlikely 

•  Cycle k functions every time interval, t 
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Digest Storage: Bloom Filters 

•  Fixed structure size  
–  Uses 2n bit array 
–  Initialized to zeros 

•  Insertion 
–  Use n-bit digest as indices 

into bit array 
–  Set to ‘1’ 

•  Membership 
–  Compute k digests, d1, d2, 

etc… 
–  If (filter[di]=1) for all i, router 

forwarded packet 
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Adjusting Graph Accuracy 

•  False positives rate depends on: 
– Length of the attack path, N 
– Complexity of network topology, d 
– Capacity of Bloom filters, P 

•  Bloom filter capacity is easy to adjust 
– Required filter capacity varies with router speed 

and number of neighbors 
– Appropriate capacity settings achieve linear error 

growth with path length 



Simulation Results 
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How Big are Digests?   
•  Quick rule of thumb: 

–   ρ = 1/8, assuming degree independence 
–  Bloom filter k = 3, M/n = 5 bits per packet. 
–  Assume packets are ~1000 bits  

•  Filters require ~0.5% of link capacity 
–  Four OC-3s require 47MB per minute 
–  128 OC-192 links need <100GB per minute 

•  Access times are equally important 
–  Current drives can write >3GB per minute 
–  OC-192 needs SRAM access times 



Filter Paging 

•  “Small” Bloom filters 
–  Random access 
–  Need fast memory 

•  Store multiple filters 
–  Increase time span 
–  Ring buffer avoids 

memory copies 
•  Timestamp each bin 

–  Fence-post issues 
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Transformations 

•  Occasionally invariant content changes 
– Network Address Translation (NAT) 
–  IP/IPsec Encapsulation, etc. 
–  IP Fragmentation 
–  ICMP errors/requests 

•  Routers need to invert these transforms 
– Often requires additional information 
– Can store this information at the router 



Transform Lookup Table 

•  Only need to restore invariant content 
–  Often available from the transform (e.g., ICMP) 

•  Otherwise, save data at transforming router 
–  Index required data by transformed packet digest 
–  Record transform type and sufficient data to invert 

•  Bounded by transform performance of router 

Digest Packet Data C Type 

28 bits 4 bits 32 bits 



Prototype Implementation 

•  Implemented in PC-based routers 
– Both FreeBSD and Linux implementations 

•  Packet digesting on kernel forwarding path 

– Zero-copy kernel/user digest tables 
•  Digest tables and TLT stored in kernel space 

•  User-level query-support daemons 
– Supports automatic topology discovery 
– Queries automatically triggered by IDS 



SPIEDER Approach 

Router 

DGA 

Each router has an internal Data Generation Agent (DGA) 

SPIE DGA Encompassing Router (SPIEDER) 



Summary 

•  Hash-based traceback is viable 
– With reasonable memory constraints 
– Supports common packet transforms 
– Timely tracing of individual packets 

•  Publicly available implementations 
– FreeBSD/Linux versions available now 
– SPIEDER-based solution in development 

http://www.ir.bbn.com/projects/SPIE 


