
CPS 590.5 Computer Security
Lecture 10: IP Traceback

Xiaowei Yang
xwy@cs.duke.edu

Roadmap

•  Previous lecture
– Practical network security

•  Today
–  IP traceback

•  Packet state based
•  Router state based

How to Attack : Exhausting shared
resources

•  Flooding traffic to exhaust the bandwidth, memory, or CPU of
a victim
–  Spoof addresses to hide

•  Passport
–  Distributed DoS (DDoS) to hide and to maximize damage

•  Multiple (weak) machines against (strong) victim

L!

IP address spoofing

•  IP source address can be spoofed
•  Challenges

– No accountability
– Filters do not work well
– Reflector attacks

Smurf/Reflector Attack

10/21/13 Networks: IP and TCP 5

Attacker
Victim

Amplifying
Network

echo
request

echo
response

echo
response

echo
response

Practical Network Support for IP
Traceback

Stefan Savage University of Washington/
University of California, San Diego

David Wetherall, Anna Karlin and Tom
Anderson University of Washington, Seattle

Single-Packet IP Traceback

Alex C. Snoeren

BBN Technologies

(with Craig Partridge, Tim Strayer, Christine Jones,
Fabrice Tchakountio, Beverly Schwartz, Matthew Condell,

Bob Clements, and Steve Kent)

8

Low-rate attacks

•  Not all attacks are large flooding DOS attacks

•  Well-placed single packet attacks

•  Packets may have spoofed IP addresses

•  How to track these attacks and find their
origin?

9

IP Traceback

V"

R"

R1" R2"

R3"

R"
"
R"
"

R"
"
R"
"

R4"

A" R"

R"R7"

R6"

"
R5"
"

10

Logging Challenges

•  Attack path reconstruction is difficult
– Packet may be transformed as it moves through

the network

•  Full packet storage is problematic
– Memory requirements are prohibitive at high line

speeds (OC-192 is ~10Mpkt/sec)

•  Extensive packet logs are a privacy risk
– Traffic repositories may aid eavesdroppers

11

Single-Packet Traceback: Goals

•  Trace a single IP packet back to source
– Asymmetric attacks (e.g., Fraggle, Teardrop,

ping-of-death)

•  Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)

12

SPIE Architecture
•  DGA: Data Generation Agent

–  computes and stores digests of each packet on forwarding path.
–  Deploy 1 DGA per router

•  SCAR: SPIE Collection and Reduction agent
–  Long term storage for needed packet digests
–  Assembles attack graph for local topology

•  STM: SPIE Traceback Manager
–  Interfaces with IDS
–  Verifies integrity and authenticity of Traceback call
–  Sends requests to SCAR for local graphs
–  Assembles attack graph from SCAR input

13

Data Generation Agents

•  Compute “packet digest”
•  Store in Bloom filter
•  Flush filter periodically

14

Packet Digests

•  Compute hash(p)
–  Invariant fields of p only
–  28 bytes hash input, 0.00092% WAN collision rate
– Fixed sized hash output, n-bits

•  Compute k independent digests
–  Increased robustness
– Reduced collisions, reduced false positive rate

15

Hash input: Invariant Content

Total Length

Identification

Checksum

Ver TOS HLen

TTL Protocol

Source Address

Destination Address

Fragment Offset M
F

D
F

Options

Remainder of Payload

First 8 bytes of Payload

28
bytes

16

Hashing Properties

•  Each hash function
– Uniform distribution of input -> output
 H1(x) = H1(y) for some x,y -> unlikely

•  Use k independent hash functions
– Collisions among k functions independent
– H1(x) = H2(y) for some x,y -> unlikely

•  Cycle k functions every time interval, t

17

Digest Storage: Bloom Filters

•  Fixed structure size
–  Uses 2n bit array
–  Initialized to zeros

•  Insertion
–  Use n-bit digest as indices

into bit array
–  Set to ‘1’

•  Membership
–  Compute k digests, d1, d2,

etc…
–  If (filter[di]=1) for all i, router

forwarded packet

1
n bits

2n
bits

H(P) H2(P)

Hk(P)

H3(P)

H1(P)

1

1

1

. .
 .

R1"

False Positive Distribution

V"

R"

R2"

R3"

R"
"
R"
"

R"
"
R"
"

R4"

A" R"

R"R7"

R6"

"
R5"
"

R1"

"
R5"
"

R"

R"

R"

R"

Adjusting Graph Accuracy

•  False positives rate depends on:
– Length of the attack path, N
– Complexity of network topology, d
– Capacity of Bloom filters, P

•  Bloom filter capacity is easy to adjust
– Required filter capacity varies with router speed

and number of neighbors
– Appropriate capacity settings achieve linear error

growth with path length

Simulation Results

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Length of Attack Path (N)

Random Graph

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Real ISP, 100% Utilization

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Degree-Independent

E
xp

ec
te

d
N

um
be

r o
f F

al
se

 P
os

iti
ve

s Real ISP, Actual Utilization

 N/7
Nρ/(1-ρ) → ρ = 1/8

P = ρ/d

P = ρ

May be able to assume
degree independence

How Big are Digests?
•  Quick rule of thumb:

–  ρ = 1/8, assuming degree independence
–  Bloom filter k = 3, M/n = 5 bits per packet.
–  Assume packets are ~1000 bits

•  Filters require ~0.5% of link capacity
–  Four OC-3s require 47MB per minute
–  128 OC-192 links need <100GB per minute

•  Access times are equally important
–  Current drives can write >3GB per minute
–  OC-192 needs SRAM access times

Filter Paging

•  “Small” Bloom filters
–  Random access
–  Need fast memory

•  Store multiple filters
–  Increase time span
–  Ring buffer avoids

memory copies
•  Timestamp each bin

–  Fence-post issues

G

E

C

A

Transformations

•  Occasionally invariant content changes
– Network Address Translation (NAT)
–  IP/IPsec Encapsulation, etc.
–  IP Fragmentation
–  ICMP errors/requests

•  Routers need to invert these transforms
– Often requires additional information
– Can store this information at the router

Transform Lookup Table

•  Only need to restore invariant content
–  Often available from the transform (e.g., ICMP)

•  Otherwise, save data at transforming router
–  Index required data by transformed packet digest
–  Record transform type and sufficient data to invert

•  Bounded by transform performance of router

Digest Packet Data C Type

28 bits 4 bits 32 bits

Prototype Implementation

•  Implemented in PC-based routers
– Both FreeBSD and Linux implementations

•  Packet digesting on kernel forwarding path

– Zero-copy kernel/user digest tables
•  Digest tables and TLT stored in kernel space

•  User-level query-support daemons
– Supports automatic topology discovery
– Queries automatically triggered by IDS

SPIEDER Approach

Router

DGA

Each router has an internal Data Generation Agent (DGA)

SPIE DGA Encompassing Router (SPIEDER)

Summary

•  Hash-based traceback is viable
– With reasonable memory constraints
– Supports common packet transforms
– Timely tracing of individual packets

•  Publicly available implementations
– FreeBSD/Linux versions available now
– SPIEDER-based solution in development

http://www.ir.bbn.com/projects/SPIE

