CPS 590.5 Computer Security
Lecture 10: IP Traceback

Xi1aowel Yang
xwy(@cs.duke.edu



Roadmap

 Previous lecture

— Practical network security

* Today

— IP traceback

» Packet state based
* Router state based



How to Attack : Exhausting shared
resources

* Flooding traffic to exhaust the bandwidth, memory, or CPU of
a victim
— Spoof addresses to hide
» Passport
— Distributed DoS (DDoS) to hide and to maximize damage
e Multiple (weak) machines against (strong) victim



[P address spoofing

[P source address can be spoofed
* Challenges

— No accountability
— Filters do not work well
— Reflector attacks



Smurf/Reflector Attack

Amplifying
Network

Attacker

10/21/13 Networks: IP and TCP



Practical Network Support for IP
Traceback

Stefan Savage University of Washington/
University of California, San Diego

David Wetherall, Anna Karlin and Tom
Anderson University of Washington, Seattle



Single-Packet IP Traceback

Alex C. Snoeren

BBN Technologies

(with Craig Partridge, Tim Strayer, Christine Jones,
Fabrice Tchakountio, Beverly Schwartz, Matthew Condell,
Bob Clements, and Steve Kent)



[.ow-rate attacks

Not all attacks are large flooding DOS attacks
Well-placed single packet attacks
Packets may have spoofed IP addresses

How to track these attacks and find their
origin?



IP Traceback




Logging Challenges

 Attack path reconstruction 1s difficult

— Packet may be transformed as 1t moves through
the network

» Full packet storage 1s problematic

— Memory requirements are prohibitive at high line
speeds (OC-192 1s ~10Mpkt/sec)

» Extensive packet logs are a privacy risk ;

— Traftic repositories may aid eavesdroppers



Single-Packet Traceback: Goals

* Trace a single IP packet back to source

— Asymmetric attacks (e.g., Fraggle, Teardrop,
ping-of-death)

* Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)

11



SPIE Architecture

DGA: Data Generation Agent

— computes and stores digests of each packet on forwarding path.

— Deploy 1 DGA per router

SCAR: SPIE Collection and Reduction agent

— Long term storage for needed packet digests
— Assembles attack graph for local topology

STM: SPIE Traceback Manager
— Interfaces with IDS
— Verifies integrity and authenticity of Traceback call
— Sends requests to SCAR for local graphs
— Assembles attack graph from SCAR input

12



Data Generation Agents

« Compute “packet digest”
» Store in Bloom filter

 Flush filter periodically

13



Packet Digests

* Compute hash(p)

— Invariant fields of p only
— 28 bytes hash input, 0.00092% WAN collision rate
— Fixed sized hash output, n-bits

* Compute k independent digests
— Increased robustness
— Reduced collisions, reduced false positive rate

14



Hash input: Invariant Content

Ver | HLen

Identification

Protocol
28 Source Address

bytes
Destination Address

Total Length
Fragment Offset

Options

First 8 bytes of Payload

I‘

Remainder of Payload




Hashing Properties

* Each hash function
— Uniform distribution of input -> output
H1(x) = Hl(y) for some x,y -> unlikely

* Use k independent hash functions
— Collisions among k functions independent
— H1(x) = H2(y) for some x,y -> unlikely

* Cycle k functions every time interval, t

16



Digest Storage: Bloom Filters

e Fixed structure size

— Uses 2" bit array n bits 1
— Initialized to zeros
H,(P) 1
* Insertion H,(P)
— Use n-bit digest as indices 2n
into bit array Hy(P) bits
— Setto ‘I’ 1
 Membership 1
— Compute £ digests, d,, d,, H,(P)
ete...
— If (filter[d,]=1) for all 1, router 2
forwarded packet

17



False Positive Distribution




Adjusting Graph Accuracy

 False positives rate depends on:
— Length of the attack path, N
— Complexity of network topology, d
— Capacity of Bloom filters, P

* Bloom filter capacity 1s easy to adjust

— Required filter capacity varies with router speed
and number of neighbors

— Appropriate capacity settings achieve linear error
growth with path length



Expected Number of False Positives

0.8

Simulation Results

Random Graph'
Real ISP, 100% Utilization --------
Real ISP, Actual Utilization -
Degree-Independent e

N/7
No/(1-0) — p = 1/8

—————
-
-
-
-
-
-
-
-
-
-
-

May be able to assume
degree independence

Length of Attack Path (N)




How Big are Digests?

e Quick rule of thumb:

— p = 1/8, assuming degree independence
— Bloom filter k = 3, M/n = 5 bits per packet.
— Assume packets are ~1000 bits

 Filters require ~0.5% of link capacity

— Four OC-3s require 47MB per minute

— 128 OC-192 links need <100GB per minute
* Access times are equally important

— Current drives can write >3GB per minute
— OC-192 needs SRAM access times



Filter Paging

e “Small” Bloom filters
— Random access

— Need fast memory
 Store multiple filters

— Increase time span

— Ring buffer avoids
memory copies

e Timestamp each bin

— Fence-post 1ssues



Transformations

* Occasionally invariant content changes
— Network Address Translation (NAT)
— IP/IPsec Encapsulation, etc.

— IP Fragmentation

— ICMP errors/requests

 Routers need to invert these transforms
— Often requires additional information

— Can store this information at the router



Transform Lookup Table

e Only need to restore invariant content
— Often available from the transform (e.g., ICMP)

* Otherwise, save data at transforming router
— Index required data by transformed packet digest

— Record transform type and sufficient data to invert

* Bounded by transform performance of router

Digest

Type

C

Packet Data

28 bits

4 bits

32 bits




Prototype Implementation

* Implemented in PC-based routers

— Both FreeBSD and Linux implementations
» Packet digesting on kernel forwarding path

— Zero-copy kernel/user digest tables
» Digest tables and TLT stored 1n kernel space
» User-level query-support daecmons
— Supports automatic topology discovery
— Queries automatically triggered by IDS



SPIEDER Approach

Each router has an@ *xex“o\ Data Generation Agent (DGA)

SPIE DGA Encompassing Router (SPIEDER)



Summary

« Hash-based traceback 1s viable
— With reasonable memory constraints
— Supports common packet transforms

— Timely tracing of individual packets

 Publicly available implementations

— FreeBSD/Linux versions available now
— SPIEDER-based solution in development

http://www.1r.bbn.com/projects/SPIE



