
CPS 590.5 Computer Security
Lecture 11: IP Traceback and Source

Address Authentication

Xiaowei Yang
xwy@cs.duke.edu

Roadmap

•  Previous lecture
– Probabilistic packet marking based IP traceback

•  Today
– Single packet IP traceback
– Comparison of these two approaches
– Source Address authentication

Single-Packet IP Traceback

Alex C. Snoeren

BBN Technologies

(with Craig Partridge, Tim Strayer, Christine Jones,
Fabrice Tchakountio, Beverly Schwartz, Matthew Condell,

Bob Clements, and Steve Kent)

4

Low-rate attacks

•  Not all attacks are large flooding DOS attacks

•  Well-placed single packet attacks

•  Packets may have spoofed IP addresses

•  How to track these attacks and find their
origin?

5

IP Traceback

V"

R"

R1" R2"

R3"

R"
"
R"
"

R"
"
R"
"

R4"

A" R"

R"R7"

R6"

"
R5"
"

6

Logging Challenges

•  Attack path reconstruction is difficult
– Packet may be transformed as it moves through

the network

•  Full packet storage is problematic
– Memory requirements are prohibitive at high line

speeds (OC-192 is ~10Mpkt/sec)

•  Extensive packet logs are a privacy risk
– Traffic repositories may aid eavesdroppers

7

Single-Packet Traceback: Goals

•  Trace a single IP packet back to source
– Asymmetric attacks (e.g., Fraggle, Teardrop,

ping-of-death)

•  Minimal cost (resource usage)

One solution: Source Path Isolation Engine (SPIE)

8

SPIE Architecture
•  DGA: Data Generation Agent

–  computes and stores digests of each packet on forwarding path.
–  Deploy 1 DGA per router

•  SCAR: SPIE Collection and Reduction agent
–  Long term storage for needed packet digests
–  Assembles attack graph for local topology

•  STM: SPIE Traceback Manager
–  Interfaces with IDS
–  Verifies integrity and authenticity of Traceback call
–  Sends requests to SCAR for local graphs
–  Assembles attack graph from SCAR input

SNOEREN ET AL.: SINGLE-PACKET IP TRACEBACK 6

C. Hash functions

SPIE places three major restrictions on the family of hash
functions, F , used as digesting functions in its Bloom filters.
First, each member function must distribute a highly correlated
set of input values (IP packet prefixes), P , as uniformly as pos-
sible over the hash’s result value space. That is, for a hash func-
tion H : P → 2m in F , and distinct packets x "= y ∈ P ,
Pr[H(x) = H(y)] = 2−m. This is a standard property of good
hash functions.
SPIE further requires that the event that two packets collide

in one hash function (H(x) = H(y) for some H) be inde-
pendent of collision events in any other functions (H ′(x) =
H ′(y), H ′ "= H). Intuitively, this implies false positives at one
router are independent of false positives at neighboring routers.
Formally, for any function H ∈ F chosen at random indepen-
dently of the input packets x and y, Pr[H(x) = H(y)] = 2−m

with high probability. Such hash families, called universal hash
families, were first defined by Carter and Wegman [19] and can
be implemented in a variety of fashions [20], [21], [22].
Finally, member functions must be straightforward to com-

pute at high link speeds. This requirement is not impractical
because SPIE hash functions do not require any cryptographic
“hardness” properties. That is, it does not have to be difficult to
generate a valid input packet given a particular hash value. Be-
ing able to create a packet with a particular hash value enables
three classes of attacks, each of which is fairly benign. One
attack would ensure that all attack packets have the same finger-
print in the Bloom filter at some router (which is very difficult
since there are multiple, independent hashes at each router), but
this achievement is of little use, as the packet fingerprints would
be distinct at neighboring routers (due to the independent hash
functions at each router). Another attack is to ensure all attack
packets have different fingerprints, but that is the common case
already. The third, andmost difficult attack, is to create an attack
packet with the same fingerprint as another, non-attack packet.
In general, this attack simply adds one additional false-positive
node (where the two packets are indistinguishable) to the attack
graph of both packets.

V. SOURCE PATH ISOLATION ENGINE

SPIE-enhanced routers maintain a cache of packet digests for
recently forwarded traffic. If a packet is determined to be offen-
sive by some intrusion detection system (or judged interesting
by some other metric), a query is dispatched to SPIE which in
turn queries routers for packet digests of the relevant time peri-
ods. The results of this query are used in a simulated reverse-
path flooding algorithm to build an attack graph that indicates
the packet’s source(s).

A. Architecture

The tasks of packet auditing, query processing, and attack
graph generation are dispersed among separate components in
the SPIE system. Figure 4 shows the three major architectural
components of the SPIE system. Each SPIE-enhanced router
has a Data Generation Agent (DGA) associated with it. Depend-
ing upon the type of router in question, the DGA can be imple-
mented and deployed as a software agent, an interface card plug

Router

Router

DGA

Router
Router

Router

DGA

SCAR
Router

Router

Router

DGA

STM

ISP's Network

Fig. 4. The SPIE network infrastructure, consisting of Data Generation Agents
(DGAs), SPIE Collection and Reduction Agents (SCARs), and a SPIE Trace-
back Manager (STM).

to the switching background bus, or a separate auxiliary box
connected to the router through some auxiliary interface.
The DGA produces packet digests of each packet as it departs

the router, and stores the digests in time-stamped digest tables.
The tables are paged every so often, and represent the set of
traffic forwarded by the router for a particular interval of time.
Each table is annotated with the time interval and the set of hash
functions used to compute the packet digests over that interval.
The digest tables are stored locally at the DGA for some period
of time, depending on the resource constraints of the router.
SCARs are responsible for a particular region of the network,

serving as data concentration points for several routers and fa-
cilitating traceback of any packets that traverse the region. Due
to the complex topologies of today’s ISPs, there will typically
be several SCARs distributed over an entire network. Upon re-
quest, each SCAR produces an attack graph for its particular
region. The attack graphs from each SCAR are grafted together
to form a complete attack graph by the SPIE TracebackManager
(STM).
The STM controls the whole SPIE system. The STM is the in-

terface to the intrusion detection system or other entity request-
ing a packet trace. When a request is presented to the STM, it
verifies the authenticity of the request, dispatches the request to
the appropriate SCARs, gathers the resulting attack graphs, and
assembles them into a complete attack graph. Upon comple-
tion of the traceback process, the STM replies to the intrusion
detection system with the final attack graph.

B. Traceback processing

Before the traceback process can begin, an attack packet must
be identified. Most likely, an intrusion detection system will de-
termine that an exceptional event has occurred and provide the
STM with a packet, P , victim, V , and time of attack, T . SPIE
places two constraints on the intrusion detection system: the
victim must be expressed in terms of the last-hop router, not
the end host itself, and the attack packet must be identified in a
timely fashion. The first requirement provides the query process
with a starting point; the latter stems from the fact that traceback
must be initiated before the appropriate digest tables are over-

10

Data Generation Agents

•  Compute “packet digest”
•  Store in Bloom filter
•  Flush filter periodically

11

Packet Digests

•  Compute hash(p)
–  Invariant fields of p only
–  28 bytes hash input, 0.00092% WAN collision rate
– Fixed sized hash output, n-bits

•  Compute k independent digests
–  Increased robustness
– Reduced collisions, reduced false positive rate

12

Hash input: Invariant Content

Total Length

Identification

Checksum

Ver TOS HLen

TTL Protocol

Source Address

Destination Address

Fragment Offset M
F

D
F

Options

Remainder of Payload

First 8 bytes of Payload

28
bytes

SNOEREN ET AL.: SINGLE-PACKET IP TRACEBACK 5

Payload

Options

Destination Address

Source Address

TTL Protocol Checksum

Identification D
F
M
F Fragment Offset

Version Header
Length Type of Service Total Length

Fig. 1. The fields of an IP packet. Fields in gray are masked out before digest-
ing, including the Type of Service, Time to Live (TTL), IP checksum, and IP
options fields.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

20 22 24 26 28 30 32 34 36 38 40

Fr
ac

tio
n

of
 C

ol
lid

ed
 P

ac
ke

ts

Prefix Length (in bytes)

WAN
LAN

Fig. 2. The fraction of packets that collide (with ToS, TTL, and checksum fields
masked out) as a function of prefix length. The WAN trace represents 985,150
packets (with 5,801 duplicates removed) between 6,031 host pairs collected on
July 20, 2000 at the University of Florida OC-3 gateway. The LAN trace con-
sists of one million packets (317 duplicates removed) between 2,879 host pairs
observed on an Ethernet segment at the MIT Lab for Computer Science.

identical packets. Figure 2 presents the rate of packet collisions
for an increasing prefix length for two representative traces: a
WAN trace from an OC-3 gateway router, and a LAN trace
from an active 100Mb Ethernet segment. (Results were sim-
ilar for traces across a number of sites.) Two unique packets
which are identical up to the specified prefix length are termed
a collision. A 28-byte prefix (only 24 non-masked bytes) results
in a collision rate of approximately 0.00092% in the wide area
and 0.139% on the LAN.
Unlike similar results reported by Duffield and Gross-

glauser [17, fig. 4], our results include only unique packets;
exact duplicates were removed from the packet trace. Close in-
spection of packets in the wide area with identical prefixes in-
dicates that packets with matching prefix lengths of 22 and 23
bytes are ICMP Time Exceeded error packets with the IP iden-
tification field set to zero. Similarly, packets with matching pre-
fixes between 24 and 31 bytes in length are TCP packets with IP
identifications also set to zero which are first differentiated by

H1(P)

H2(P)

H3(P)

.

.

.

Hk(P)

n bits

1

1

1

1

2n

bits

Fig. 3. For each packet received, SPIE computes k independent n-bit digests,
and sets the corresponding bits in the 2n-bit digest table.

the TCP sequence number or acknowledgment fields. 3
The markedly higher collision rate in the local area is due

to the lack of address and traffic diversity. This expected re-
sult does not significantly impact SPIE’s performance, how-
ever. LANs are likely to exist at only two points in an attack
graph: immediately surrounding the victim and the attacker(s).
False positives on the victim’s local network can be easily elimi-
nated from the attack graph—they likely share the same gateway
router in any event. False positives at the source are unlikely if
the attacker is using spoofed source addresses, as this provides
the missing diversity in attack traffic, and remain in the imme-
diate vicinity of the true attacker by definition. Hence, for the
purposes of SPIE, IP packets are effectively distinguished by the
first 24 invariant bytes of the packet.

B. Bloom filters

Constructing a digest table containing packet digests corre-
sponding to the traffic forwarded by a router for a given time
interval is a challenging task. A naive technique that simply
stored the digests themselves would require massive amounts of
storage. Instead, SPIE implements digest tables using space-
efficient data structures known as Bloom filters [3]. A Bloom
filter computes k distinct packet digests for each packet using
independent uniform hash functions, and uses the n-bit results
to index into a 2n-sized bit array. The array is initialized to all
zeros, and bits are set to one as packets are received. Figure 3
depicts a Bloom filter with k hash functions.
Membership tests can be conducted simply by computing the

k digests on the packet in question and checking the indicated
bit positions. If any one of them is zero, the packet was not
stored in the table. If, however, all the bits are one, it is highly
likely the packet was stored. It is possible that some set of other
insertions caused all the bits to be set, creating a false positive,
but the rate of such false positives can be controlled by only
allowing an individual Bloom filter to store a limited number
of digests [18]. Saturated filters can be swapped out for a new,
empty filter, and archived for later querying.

3Further investigation indicates a number of current operating systems, in-
cluding recent versions of Linux, frequently set the IP ID to zero.

14

Hashing Properties

•  Each hash function
– Uniform distribution of input -> output
 H1(x) = H1(y) for some x,y -> unlikely

•  Use k independent hash functions
– Collisions among k functions independent
– H1(x) = H2(y) for some x,y -> unlikely

•  Cycle k functions every time interval, t

15

Digest Storage: Bloom Filters

•  Fixed structure size
–  Uses 2n bit array
–  Initialized to zeros

•  Insertion
–  Use n-bit digest as indices

into bit array
–  Set to ‘1’

•  Membership
–  Compute k digests, d1, d2,

etc…
–  If (filter[di]=1) for all i, router

forwarded packet

1
n bits

2n
bits

H(P) H2(P)

Hk(P)

H3(P)

H1(P)

1

1

1

. .
 .

R1"

False Positive Distribution

V"

R"

R2"

R3"

R"
"
R"
"

R"
"
R"
"

R4"

A" R"

R"R7"

R6"

"
R5"
"

R1"

"
R5"
"

R"

R"

R"

R"

Adjusting Graph Accuracy

•  False positives rate depends on:
– Length of the attack path, N
– Complexity of network topology, d
– Capacity of Bloom filters, P

•  Bloom filter capacity is easy to adjust
– Required filter capacity varies with router speed

and number of neighbors
– Appropriate capacity settings achieve linear error

growth with path length

Simulation Results

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Length of Attack Path (N)

Random Graph

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Real ISP, 100% Utilization

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Degree-Independent

E
xp

ec
te

d
N

um
be

r o
f F

al
se

 P
os

iti
ve

s Real ISP, Actual Utilization

 N/7
Nρ/(1-ρ) → ρ = 1/8

P = ρ/d

P = ρ

May be able to assume
degree independence

How Big are Digests?
•  Quick rule of thumb:

–  ρ = 1/8, assuming degree independence
–  Bloom filter k = 3, M/n = 5 bits per packet.
–  Assume packets are ~1000 bits

•  Filters require ~0.5% of link capacity
–  Four OC-3s require 47MB per minute
–  128 OC-192 links need <100GB per minute

•  Access times are equally important
–  Current drives can write >3GB per minute
–  OC-192 needs SRAM access times

Transformations

•  Occasionally invariant content changes
– Network Address Translation (NAT)
–  IP/IPsec Encapsulation, etc.
–  IP Fragmentation
–  ICMP errors/requests

•  Routers need to invert these transforms
– Often requires additional information
– Can store this information at the router

Transform Lookup Table

•  Only need to restore invariant content
–  Often available from the transform (e.g., ICMP)

•  Otherwise, save data at transforming router
–  Index required data by transformed packet digest
–  Record transform type and sufficient data to invert

•  Bounded by transform performance of router

Digest Packet Data C Type

28 bits 4 bits 32 bits

Prototype Implementation

•  Implemented in PC-based routers
– Both FreeBSD and Linux implementations

•  Packet digesting on kernel forwarding path

– Zero-copy kernel/user digest tables
•  Digest tables and TLT stored in kernel space

•  User-level query-support daemons
– Supports automatic topology discovery
– Queries automatically triggered by IDS

Summary

•  Hash-based traceback is viable
– With reasonable memory constraints
– Supports common packet transforms
– Timely tracing of individual packets

•  Publicly available implementations
– FreeBSD/Linux versions available now
– SPIEDER-based solution in development

http://www.ir.bbn.com/projects/SPIE

Discussion

•  Single-packet v.s. probabilistic marking
– Goals
– Assumptions
– Performance
– Cost

Accountable source IP addresses

•  Traceback does not prevent source address
spoofing attacks

•  Does not automatically stop the attack
– Reflector attacks

•  Question: can we make the IP source address
accountable?

Passport: secure and adoptable source
authentication

Xin Liu, Ang Li, Xiaowei Yang
UC Irvine

David Wetherall
Univ. of Washington and Intel

Research

Outline
•  Motivation

– Source address spoofing weakens DoS defense

•  Passport
– Design
– Evaluation
– Applications

•  Conclusion
– Making source addresses trustworthy is feasible

and advantageous

Spoofing weakens DoS defense

•  A variety of proposals
–  Filter-based: AITF, Pushback, CenterTrack, dFence …
–  Capability-based: SIFF, TVA …
–  Overlay-based: SOS, Mayday, i3, Spread Spectrum,

Phalanx…
–  …

L!

Spoofing weakens DoS defense
•  Case Study I: automated filtering

–  Impersonate other hosts
–  Evade filters
–  Reflector attacks

•  Case study II: Pushback
–  Hop-by-hop, not directly to source
–  Collateral damage at a legacy router

•  Case study III: capability-based systems
–  Can’t achieve bandwidth fairness on the request channel

 Case study I: automated filtering

L!

Block !

X

Attackers can impersonate legitimate hosts

L!

Block !

X

Attackers can evade filters

L!

Block !

Attackers can launch reflector attacks

•  Amplify attack bandwidth
•  In early 2006, DNS reflector attacks flooded victims with up

to 5Gbps traffic

L!

Spoofing weakens DoS defense
•  Case study I: automated filtering

–  Impersonate other hosts
–  Evade filters
–  Reflector attacks

•  Case study II: Pushback
–  Hop-by-hop, not directly to source
–  Collateral damage at a legacy router

•  Case study III: capability-based systems
–  Can’t achieve bandwidth fairness on the request channel

Two steps to combat DoS
1. Make source addresses trustworthy (this talk)

q Goal of ingress filtering, Best Current Practice

2. Build defense systems with trustworthy source
addresses
q “We assume source address spoofing attacks are

prevented using systems such as Passport…”
q Filter-based, capability-based, overlay-based…

Main challenges
Secure Lightweight Adoptable

Ingress filtering

Digital signature

Passport
•  Ingress filtering

–  One weak link allows spoofing
•  Spoofer shows ~20% of the Internet can spoof
•  Hubble

–  An early adopter can’t protect its own address space

•  Digital signature
–  PKI, time-consuming to stamp and verify, large header overhead

ü
û ü

û û
ü

ü ü ü

Passport mechanisms
•  Symmetric key cryptography

– Efficient, secure

•  Use routing to distribute keys
– Bootstrap, efficient, simple

•  AS-level (autonomous system) fate sharing
– Scalable, incentive compatible

Please refer to our paper for more details.

AS-level fate sharing

•  Passport prevents AS-level spoofing
–  One AS cannot spoof other ASes’ addresses

•  An AS is responsible to prevent internal spoofing
–  Ingress filters
–  An irresponsible AS only harms its own hosts

•  Scalable, incentive compatible

AS1 AS2 AS3

J!

Efficient symmetric key cryptography

•  Source border router stamps Message Authentication Codes
(MACs) into a Passport header
–  Obtain AS paths from BGP

•  Other border routers verify corresponding MACs
–  Demote or discard invalid Passports

AS1 AS2 AS3

(AS1, AS2)
(AS1, AS3)

(AS1, AS2)
(AS1, AS3)

J!

MAC1,2

dst src Payload Passport

MAC1,3 MAC1,3

dst src Payload Passport

How to obtain shared secret keys

•  Problems
– Bootstrap: chicken-and-egg
– Efficiency: must obtain shared keys with ~30K

ASes

AS1 AS2 AS3

(AS1, AS2)
(AS1, AS3)

(AS1, AS2)
(AS2, AS3)

(AS2, AS3)
(AS1, AS3)

J!

A Diffie-Hellman key exchange via routing

AS1 AS2 AS3

J!

10.0.0.1/16 10.0.0.2/16 10.0.0.3/16

(r1, d1)

pdpdASAS rr mod)(mod)(),(12
2121 ==

(r2, d2) (r3, d3)

pgd i

i

r mod= g, p are system-wide parameters

10.0.0.1/16 via AS1 d1 10.0.0.1/16 via AS1 d1 10.0.0.1/16 via AS2 AS1 d1

(AS1, AS2)

pdpdASAS rr mod)(mod)(),(13
3131 ==

(AS1, AS3)

10.0.0.1/16 via AS1 d1

A Diffie-Hellman key exchange via routing

AS1 AS2 AS3

J!

10.0.0.1/16 10.0.0.2/16 10.0.0.3/16

(r1, d1) (r2, d2) (r3, d3)

(AS1, AS2) (AS1, AS3)

10.0.0.2/16 via AS2 d2

(AS1, AS2)

10.0.0.3/16 via AS3 d3

(AS1, AS3) (AS2, AS3) (AS2, AS3)

Secure key distribution via routing

•  Accept d received from the next hop AS
•  Secure routing à secure source authentication

AS1
AS2

d2 10.0.0.2/16 d2 10.0.0.2/16 d2’ 10.0.0.2/16

10.0.0.2/16

Routing helps a lot
•  Bootstrap and secure key exchange

•  Efficient
– Send one announcement, establish all pair keys

•  DoS-resistant
– High priority forwarding

Other design issues
•  Incremental deployable

1. Transparent to hosts
2. Inter-operate with legacy ASes
3. Downstream legacy ASes can also benefit
– BGP optional and transitive attributes
– A shim layer
– Encapsulation

•  Secure under host, monitor, and router attackers
– Seamless rekey
– Resistant to sniff-and-replay: bound to a path

•  Handle path changes
– Demote at the intermediate ASes

Evaluation
•  Challenges: secure, lightweight, and adoptable

•  Lightweight
–  Linux-based implementation (Click and XORP)

•  Throughput, processing, header, and memory overhead
•  Plausible for multi-gigabit implementation

•  Adoptable
–  Model adoptability

•  “Modeling Adoptability of Secure BGP Protocols,” Chan et al.,
SIGCOMM 2006

•  Security analysis

The adoptability model

•  F: the immediate security benefit

•  A security indicator: E(M,D) =

•  F = ∑D wD ∑M P(M) E(M,D) / ∑D wD

S

D

M

I

A

B

1, M cannot spoof S

0, M can spoof S

Simulate the adoption dynamics

•  Δ F > c, S adopts an anti-spoofing mechanism
•  Network effect
•  Metric: the critical threshold cth

•  Higher cth, more adoptable

S

D

M

I

A

B

Comparing different schemes
•  Passport
•  Ingress filtering
•  SAVE: a protocol to install route-based filters

– A router maintains a source address table
– Best non-cryptographic proposal

Passport is more adoptable than alternatives

•  wD : uniform traffic distribution
•  P(M): uniform attacker distribution
•  Host, Monitor, and Router attackers

Ingress

Passport

SAVE

Omni

Passport provides stronger security benefit

•  F measures probabilistic guarantee
–  F = ∑D wD ∑M P(M) E(M,D) / ∑D wD

•  Strong security benefit: fraction of Ds no attacker can spoof S
–  Fs = ∑D wD ∑M P(M) E(M,D) / ∑D wD, s.t. ∑M P(M) E(M,D) = 1

Passport

SAVE
Ingress

Comparison with related work
•  Non-cryptographic approaches: ingress

filtering, route-based filtering
– Less secure and adoptable

•  Digital signatures
– Heavyweight
–  ~2 orders of magnitude slower

•  Challenge-response
– Reflector attacks
– First-packet attacks

•  Path marking: traceback, path identifiers
– Post-mortem
– Path prefix spoofing

Applications of Passport
•  Prevent reflector attacks

•  Strengthen capability-based DoS defense systems
–  Bandwidth fairness on the request channel

•  Secure automated filtering systems

•  Others
–  Resource allocation
–  Address-based authentication
–  Forensic analysis
–  …

Passport facilitates secure and scalable
filtering

•  Locate attack sources using source addresses
•  Filter based on source addresses

J!

Conclusion
•  Passport: trustworthy source addresses

– Secure, lightweight, adoptable, and incrementally
deployable

– Symmetric key cryptography, use routing to distribute
keys

•  Applications
– Prevent reflector attacks
– Build other DoS defense systems

•  Work-in-progress: filtering, capability-base

More efficient than public key
signatures

•  Differ in magnitude
•  Hardware implementation to be faster

Passport

Digital
signatures

Security properties (II)

•  Resistant to sniff-and-replay attack
– An intermediate MAC includes path information

J!

Ba
d

Good

monitor

X

Security properties (III)

•  Fate sharing with routing
–  Switch to a different path
–  Duplicate Passport headers may be detected at a higher cost [SRUTI 06]

J!

Ba
d

Good

Stamping

AS1 AS2 AS3

(AS1, AS2) (AS1, AS3)
(AS1, AS2)
(AS2, AS3)

(AS2, AS3) (AS1, AS3)

J!

IPID Flg Fragmt
Checksum

Payload

V L TOS Len

TTL Proto
Src Addr
Dst Addr

IP
hdr + AS1+ (AS1, AS2) à

Intermediate

MAC1,2 (32-bit)

(AS1, AS3) + à MAC1,3 (64-bit)

Destination

AS path obtained from BGP

 Verification

AS1 AS2 AS3

(AS1, AS2)
(AS1, AS3)

(AS1, AS2) (AS2, AS3)
(AS2, AS3)
(AS1, AS3)

J!

IP header fields

Payload

+ AS1+ (AS1, AS2)

+ == MAC1,2

Y
Forward

N Demote (intermediate)
Or discard (dst)

Incremental deployment
•  Encapsulate in a BGP optional transitive path

attribute

•  Packets carry Passport in a shim layer

•  Hosts need not upgrade
•  Downstream non-upgraded ASes can also benefit

BGP Attr. Hdr Flag New DH val Old DH val

32bit 8bit 1024bit 1024bit

IP Header Passport Payload

Incremental deployment – legacy
traffic

•  Legacy traffic is queued separately from
Passport verified traffic

Verified
Passport
Check

Passport

Unverified

Legacy

Y

N

Incremental deployment – legacy
traffic

•  Non-ungraded AS treats demoted traffic with
lower priority
– Use IP header (DiffServ) to demote

Normal

Demote

A capability-based architecture TVA

1.  Source requests permission to send.
2.  Destination authorizes source for limited transfer, e.g, 32KB in

10 secs
•  A capability is the proof of a destination’s

authorization.
3.  Source places capabilities on packets and sends them.
4.  Network filters packets based on capabilities. [SIGCOMM 05]

J!cap

Request channel flooding is the Achilles
heel

•  Request packets do not carry capabilities
•  Denial-of-capabilities

L!

Passport mitigates request flooding attacks

J!

•  Request packets can be queued by their source
ASes

•  Per-network fairness incents improvement on
local security

Other features
•  Incremental deployable

–  Coexist with legacy ASes
–  Hosts need not upgrade

•  Seamlessly rekey to improve security

•  Downstream non-upgraded ASes can also benefit
–  Demote using IP DiffServ codepoint
–  Encapsulation to inter-operate with non-upgraded

destination ASes

Incremental deployment – legacy
AS

•  Passport header is inserted as a shim layer

IP Header Passport Payload

Incremental deployment – bump-in-the-
wire

•  Hosts need not upgrade

AS1 AS2 AS3

J!

10.0.0.1/16 10.0.0.2/16 10.0.0.3/16

(r1, d1) (r2, d2) (r3, d3)

Re-key

•  1-bit in the Passport header indicates the
source AS’s Diffie-Hellman value’s parity

•  1-bit in each MAC indicates the verifier’s
Diffie-Hellman value’s parity

•  1-bit in BGP attribute’s flag field to indicate
the parity of a new Diffie-Hellman value

Stamping throughput

•  Average AS path length is ~ 4
•  Assuming 400-byte average packet size, throughput is 0.9 ~ 2 Gbps
•  Only done for traffic an AS originates
•  Hardware implementation may achieve 40Gbps AES encryption speed

–  http://www.heliontech.com

2-hop

4-hop

8-hop

Verification throughput

•  Assuming 400-byte average packet size,
throughput is 2 Gbps

2-hop

4, 8-hop

Other overhead

•  Header
–  4-5 AS hops: 24 bytes
– Four bytes per additional AS hop
– Can be optimized if combined with capabilities

•  Memory
–  12MB to store 30K shared keys

Mitigate reflector attacks

•  With Passport, compromised hosts cannot spoof a victim’s
address

J!

Limited protection using path
identifiers

•  Deep hierarchy may starve legitimate requests
–  (1/degree)L

L!
1

2

1

11…1

12…1
1 1

1

Limited protection using path
identifiers

•  Deep hierarchy may starve legitimate requests
•  Path spoofing is possible in non-deployed regions
•  “Denial-of-capabilities”

L!1

1 1…1

1

2
k 1 2…1

k…1

ü

ü

…

Experimental validation

•  Mitigate reflector attacks
•  Capability-based DoS defense systems
•  Secure filtering

Reflector mitigation experiments

•  Shaded circles represent Passport-enabled ASes
•  Emulate a DNS reflector attack on a testbed

–  U2 ~ U9 are reflectors
–  40 times of traffic amplification

•  Metrics
–  TCP transfer times
–  Fraction of completed transfers

Passport mitigates reflector attacks

•  20KB file size
•  60ms round trip time

Passport
protecte
d

Passport mitigates reflector attacks

Passport
protecte
d

Evaluate Passport-enhanced capability-based
systems

•  Realistic Internet topologies from RouteViews

•  Simulations on ns-2
– TVA
– TVA + Passport
– TVA + Portcullis (a puzzle-based solution) [Parno

07]

•  Metrics
– TCP transfer times: 20KB files
– Fraction of completed transfers

•  Time-out after 25 seconds

Passport improves capability-based systems

•  Full deployment
•  Results are users in clean ASes
•  Improvement in partial deployment more

significant

TVA+

TVA

Portcullis

Passport-enabled capability-based
systems

TVA+

TVA

Portcullis

Passport enables secure filtering

•  Comparing with an early filter system Active Internet
Traffic Filter [Argyraki05]
– Path stamping to mitigate spoofing
– Three-way handshake to verify filter requests

Passport
protecte
d

AITF

Passport enables secure filtering

Passport
protecte
d

AITF

A simulated DoS flooding attack

A simulated reflector attack

Passport mitigates reflector attacks

Digital signatures: heavyweight

•  Public key infrastructure
•  Time-consuming to verify
•  High packet header overhead: e.g. RSA ~512

bits

L!

Ba
d

Good

Packets carry
digital
signatures 0F89A31E…

1D35B7EE… X

Solution: use routing to distribute
keys

AS1 AS2 AS3

J!

10.0.0.1/16 10.0.0.2/16 10.0.0.3/16

Reach 10.0.0.1/16 via AS1 Reach 10.0.0.1/16 via AS1 Reach 10.0.0.1/16 via AS1 Reach 10.0.0.1/16 via AS2 AS1

•  Routing proceeds packet forwarding
•  Routing implements reliable broadcast

Most newsworthy weakness of the Internet
•  Nearly 4000 attacks per week [Moore01]

•  Data from Prolexic Technologies

[Claiborne07]
– Less than 0.1% of DDoS attacks ending in an

arrest in US
– A major US corporation lost over 2 million in a 2

hour outage
– An Online payment processor lost 400 thousand in

just under 72 hours
– …

•  Yahoo, buy.com, eBay, Amazon, Datek,
E*Trade, CNN …

Possibility of spoofing creates a vicious
cycle

•  “Steps towards a DoS-resistant Internet
architecture,” Handley and Greenhalgh, 2005

Spoofing No automated
filtering

No need
to spoof

Ingress filtering: little incentive

•  “Self quarantine”
•  Spoofer: ~ 20% of IP addresses or networks still

allow spoofing
•  You’ve heard Hubble

L!

M

S

D

Passport

•  Compromised hosts or networks cannot spoof
addresses of other deployed networks

J!

Ba
d

S

X

D

