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The first Section below extends to m × n matrices the results on orthogonality and projection we have
previously seen for vectors. The Sections thereafter use these concepts to introduce the Singular Value
Decomposition (SVD) of a matrix, the pseudo-inverse, and its use for the solution of linear systems.

1 Orthogonal Matrices

Let S be an n-dimensional subspace of Rm (so that we necessarily have n ≤ m), and let v1, . . . ,vn be
an orthonormal basis for S. Consider a point P in S. If the coordinates of P in Rm are collected in an
m-dimensional vector

p =

 p1
...
pm

 ,

and since P is in S , it must be possible to write p as a linear combination of the vjs. In other words, there
must exist coefficients

q =

 q1
...
qn


such that

p = q1v1 + . . .+ qnvn = V q

where
V =

[
v1 · · · vn

]
is an m× n matrix that collects the basis for S as its columns. Then for any i = 1, . . . , n we have

vT
i p = vT

i

n∑
j=1

qjvj =

n∑
j=1

qjv
T
i vj = qi ,

since the vj are orthonormal. This is important, and may need emphasis:

If

p =
n∑

j=1

qjvj

and the vectors of the basis v1, . . . ,vn are orthonormal, then the coefficients qj are the
signed magnitudes of the projections of p onto the basis vectors:

qj = vT
j p . (1)

1
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In matrix form,
q = V Tp . (2)

Also, we can collect the n2 equations

vT
i vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V TV = I (3)

where I is the n × n identity matrix. A matrix V that satisfies equation (3) is said to be orthogonal. Thus,
a matrix is orthogonal if its columns are orthonormal. Since the left inverse of a matrix V is defined as the
matrix L such that

LV = I , (4)

comparison with equation (3) shows that the left inverse of an orthogonal matrix V exists, and is equal to
the transpose of V .

Of course, this argument requires V to be full rank, so that the solution L to equation (4) is unique.
However, V is certainly full rank, because it is made of orthonormal columns.

Notice that V R = I cannot possibly have a solution when m > n, because the m ×m identity matrix
has m linearly independent 1 columns, while the columns of V R are linear combinations of the n columns
of V , so V R can have at most n linearly independent columns.

Of course, this result is still valid when V is m ×m and has orthonormal columns, since equation (3)
still holds. However, for square, full-rank matrices (r = m = n), the distinction between left and right
inverse vanishes, as we saw in class. Since the matrix V V T contains the inner products between the rows of
V (just as V TV is formed by the inner products of its columns), the argument above shows that the rows of
a square orthogonal matrix are orthonormal as well. We can summarize this discussion as follows:

Theorem 1.1 The left inverse of an orthogonal m × n matrix V with m ≥ n exists and is equal to the
transpose of V :

V TV = I .

In particular, if m = n, the matrix V −1 = V T is also the right inverse of V :

V square ⇒ V −1V = V TV = V V −1 = V V T = I .

Sometimes, when m = n, the geometric interpretation of equation (2) causes confusion, because two
interpretations of it are possible. In the interpretation given above, the point P remains the same, and the
underlying reference frame is changed from the elementary vectors ej (that is, from the columns of I) to
the vectors vj (that is, to the columns of V ). Alternatively, equation (2) can be seen as a transformation, in
a fixed reference system, of point P with coordinates p into a different point Q with coordinates q. This,
however, is relativity, and should not be surprising: If you spin clockwise on your feet, or if you stand still
and the whole universe spins counterclockwise around you, the result is the same.2

Consistently with either of these geometric interpretations, we have the following result:
1Nay, orthonormal.
2At least geometrically. One solution may be more efficient than the other in other ways.
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Theorem 1.2 The norm of a vector x is not changed by multiplication by an orthogonal matrix V :

‖V x‖ = ‖x‖ .

Proof.
‖V x‖2 = xTV TV x = xTx = ‖x‖2 .

∆

We conclude this section with an obvious but useful consequence of orthogonality. In an earlier note, we
defined the projection p of a vector b onto another vector c as the point on the line through c that is closest
to b. This notion of projection can be extended from lines to vector spaces by the following definition: The
projection p of a point b ∈ Rn onto a subspace C is the point in C that is closest to b.

Also, for unit vectors c, the projection matrix is ccT , and the vector b − p is orthogonal to c. An
analogous result holds for subspace projection, as the following theorem shows.

Theorem 1.3 Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto range(U).
Furthermore, the difference vector between b and its projection p onto range(U) is orthogonal to range(U):

UT (b− p) = 0 .

Proof. A point p in range(U) is a linear combination of the columns of U :

p = Ux

where x is the vector of coefficients (as many coefficients as there are columns in U ). The squared distance
between b and p is

‖b− p‖2 = (b− p)T (b− p) = bTb + pTp− 2bTp = bTb + xTUTUx− 2bTUx .

Because of orthogonality, UTU is the identity matrix, so

‖b− p‖2 = bTb + xTx− 2bTUx .

The derivative of this squared distance with respect to x is the vector

2x− 2UTb

which is zero iff
x = UTb ,

that is, when
p = Ux = UUTb

as promised.
For this value of p the difference vector b− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUTb) = UTb− UTb = 0 .

∆
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Figure 1: The matrix in equation (5) maps a circle on the plane into an ellipse in space. The two small boxes
are corresponding points.

2 The Singular Value Decomposition

Here is the main intuition captured by the Singular Value Decomposition (SVD) of a matrix:

An m× n matrix A of rank r maps the r-dimensional unit hypersphere in rowspace(A) into an
r-dimensional hyperellipse in range(A).

Thus, a hypersphere is stretched or compressed into a hyperellipse, which is a quadratic hypersurface that
generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions. In three dimensions,
the hyperellipse is an ellipsoid, in one dimension it is a pair of points. In all cases, the hyperellipse in
question is centered at the origin.

For instance, the rank-2 matrix

A =
1√
2

 √3
√

3
−3 3
1 1

 (5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 1 shows
the map

b = Ax .

Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major
axis of the ellipse, and two other diametrically opposite points on the unit circle are mapped into the two
endpoints of the minor axis of the ellipse. The lines through these two pairs of points on the unit circle are
always orthogonal. This result can be generalized to any m× n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome.
Instead, we will prove it algebraically by first introducing the existence of the SVD and then using the latter
to prove that matrices map hyperspheres into hyperellipses.
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Theorem 2.1 If A is a real m× n matrix then there exist orthogonal matrices

U =
[
u1 · · · um

]
∈ Rm×m

V =
[
v1 · · · vn

]
∈ Rn×n

such that
UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

The columns of V are the right singular vectors of A, and those of U are its left singular vectors. The
diagonal entries of Σ are the singular values of A. The ratio

κ(A) = σ1/σp (6)

is the condition number of A, and is possibly infinite.
Proof. Let x and y be unit vectors in Rn and Rm, respectively, and consider the bilinear form

z = yTAx .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}

is compact, so that the scalar function z(x,y) must achieve a maximum value on S, possibly at more than
one point 3. Let u1, v1 be two unit vectors in Rm and Rn respectively where this maximum is achieved,
and let σ1 be the corresponding value of z:

max
‖x‖=‖y‖=1

yTAx = uT
1Av1 = σ1 .

It is easy to see that u1 is parallel to the vectorAv1. If this were not the case, their inner product uT
1Av1

could be increased by rotating u1 towards the direction of Av1, thereby contradicting the fact that uT
1Av1

is a maximum. Similarly, by noticing that

uT
1Av1 = vT

1 A
Tu1

and repeating the argument above, we see that v1 is parallel to ATu1.
The vectors u1 and v1 can be extended into orthonormal bases for Rm and Rn, respectively. Collect

these orthonormal basis vectors into orthogonal matrices U1 and V1. Then

UT
1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column of AV1 is Av1 = σ1u1, so the first entry of UT
1 AV1 is uT

1 σ1u1 = σ1, and its
other entries are uT

j Av1 = 0 because Av1 is parallel to u1 and therefore orthogonal, by construction, to

3Actually, at least at two points: if uT
1 Av1 is a maximum, so is (−u1)

TA(−v1).
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u2, . . . ,um. A similar argument shows that the entries after the first in the first row of S1 are zero: the row
vector uT

1A is parallel to vT
1 , and therefore orthogonal to v2, . . . ,vn, so that uT

1Av2 = . . . = uT
1Avn = 0.

The matrix A1 has one fewer row and column than A. We can repeat the same construction on A1 and
write

UT
2 A1V2 = S2 =

[
σ2 0T

0 A2

]
so that [

1 0T

0 UT
2

]
UT
1 AV1

[
1 0T

0 V2

]
=

 σ1 0 0T

0 σ2 0T

0 0 A2

 .

This procedure can be repeated until Ak vanishes (zero rows or zero columns) to obtain

UTAV = Σ

where UT and V are orthogonal matrices obtained by multiplying together all the orthogonal matrices used
in the procedure, and

Σ = diag(σ1, . . . , σp) .

Since matrices U and V are orthogonal, we can premultiply the matrix product in the theorem by U and
postmultiply it by V T to obtain

A = UΣV T ,

which is the desired result.
It only remains to show that the elements on the diagonal of Σ are nonnegative and arranged in non-

increasing order. To see that σ1 ≥ . . . ≥ σp (where p = min(m,n)), we can observe that the successive
maximization problems that yield σ1, . . . , σp are performed on a sequence of sets each of which contains
the next. To show this, we just need to show that σ2 ≤ σ1, and induction will do the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷTA1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]
= max

‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT
1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xTv1 = yTu1 = 0

yTAx ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vector x is equal to the unit vector [0 x̂]T transformed by the orthogonal matrix V1, and is therefore
itself a unit vector. In addition, it is a linear combination of v2, . . . ,vn, and is therefore orthogonal to v1.
A similar argument shows that y is a unit vector orthogonal to u1. Because x and y thus defined belong to
subsets (actually sub-spheres) of the unit spheres in Rn and Rm, we conclude that σ2 ≤ σ1.

The σi are nonnegative because all these maximizations are performed on unit hyper-spheres. The σis
are maxima of the function z(x,y) which always assumes both positive and negative values on any hyper-
sphere: If z(x,y) is negative, then z(−x,y) is positive, and if x is on a hyper-sphere, so is −x. ∆
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The singular value decomposition is “almost unique”. There are two sources of ambiguity. The first is in
the orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding
left singular vector is flipped as well, and still obtain a valid SVD. Singular vectors must be flipped in pairs
(a left vector and its corresponding right vector) because the singular values are required to be nonnegative.
This is a trivial ambiguity. If desired, it can be removed by imposing, for instance, that the first nonzero
entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrixAmaps a hypersphere into another hypersphere,
the axes of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, all of the
form

I = UIUT

where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular values
coincide, the subspaces identified by the corresponding left and right singular vectors are unique, but any
orthonormal basis can be chosen within, say, the right subspace and yield, together with the corresponding
left singular vectors, a valid SVD. Except for these ambiguities, the SVD is unique.

Even in the general case, the singular values of a matrix A are the lengths of the semi-axes of the
hyperellipse E defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we define r by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,

that is, if σr is the smallest nonzero singular value of A, then

rank(A) = r

null(A) = span{vr+1, . . . ,vn}
range(A) = span{u1, . . . ,ur} .

The sizes of the matrices in the SVD are as follows: U ism×m, Σ ism×n, and V is n×n. Thus, Σ has
the same shape and size as A, while U and V are square. However, if m > n, the bottom (m−n)×n block
of Σ is zero, so that the last m− n columns of U are multiplied by zero. Similarly, if m < n, the rightmost
m × (n − m) block of Σ is zero, and this multiplies the last n − m rows of V . This suggests a “small,”
equivalent version of the SVD. If p = min(m,n), we can define Up = U(:, 1 : p), Σp = Σ(1 : p, 1 : p), and
Vp = V (:, 1 : p), and write

A = UpΣpV
T
p

where Up is m× p, Σp is p× p, and Vp is n× p.
Moreover, if p − r singular values are zero, we can let Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), and

Vr = V (:, 1 : r), then we have

A = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i ,

which is an even smaller, minimal, SVD.
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Finally, both the 2-norm and the Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

and

‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖

are neatly characterized in terms of the SVD:

‖A‖2F = σ21 + . . .+ σ2p

‖A‖2 = σ1 .

In the next few sections we introduce fundamental results and applications that testify to the importance
of the SVD.

3 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least squares
sense. A linear system of the form

Ax = b (7)

arising from a real-life application may or may not admit a solution, that is, a vector x that satisfies this
equation exactly. Often more measurements are available than strictly necessary, because measurements
are unreliable. This leads to more equations than unknowns (the number m of rows in A is greater than
the number n of columns), and equations are often mutually incompatible because they come from inexact
measurements. Even whenm ≤ n the equations can be incompatible, because of errors in the measurements
that produce the entries of A. In these cases, it makes more sense to find a vector x that minimizes the norm

‖Ax− b‖

of the residual vector
r = Ax− b .

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy any of the m
equations in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of
the squares of the discrepancies between left- and right-hand sides of the equations.

In other circumstances, not enough measurements are available. Then, the linear system (7) is under-
determined, in the sense that it has fewer independent equations than unknowns (its rank r is less than
n).

Incompatibility and under-determinacy can occur together: the system admits no solution, and the least-
squares solution is not unique. For instance, the system

x1 + x2 = 1

x1 + x2 = 3

x3 = 2
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has three unknowns, but rank 2, and its first two equations are incompatible: x1 +x2 cannot be equal to both
1 and 3. A least-squares solution turns out to be x = [1 1 2]T with residual r = Ax−b = [1 − 1 0], which
has norm

√
2 (admittedly, this is a rather high residual, but this is the best we can do for this problem, in the

least-squares sense). However, any other vector of the form

x′ =

 1
1
2

+ α

 −1
1
0


is as good as x. For instance, x′ = [0 2 2], obtained for α = 1, yields exactly the same residual as x (check
this).

In summary, an exact solution to the system (7) may not exist, or may not be unique. An approximate
solution, in the least-squares sense, always exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be
shorter than all the others, that is, its norm ‖x‖ is smallest. One can therefore redefine what it means to
“solve” a linear system so that there is always exactly one solution. This minimum norm solution is the
subject of the following theorem, which both proves uniqueness and provides a recipe for the computation
of the solution.

Theorem 3.1 The minimum-norm least squares solution to a linear system Ax = b, that is, the shortest
vector x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UTb (8)

where

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .
0 0 · · · 0


is an n×m diagonal matrix.

The matrix
A† = V Σ†UT

is called the pseudoinverse of A.
Proof. The minimum-norm Least Squares solution to

Ax = b

is the shortest vector x that minimizes
‖Ax− b‖

that is,
‖UΣV Tx− b‖ .



10 3 THE PSEUDOINVERSE

This can be written as
‖U(ΣV Tx− UTb)‖ (9)

because U is an orthogonal matrix, UUT = I . But orthogonal matrices do not change the norm of vectors
they are applied to (theorem 1.2), so that the last expression above equals

‖ΣV Tx− UTb‖

or, with y = V Tx and c = UTb,
‖Σy − c‖ .

In order to find the solution to this minimization problem, let us spell out the last expression. We want to
minimize the norm of the following vector:

σ1 0 · · · 0

0
. . . · · · 0

σr
... 0

...
. . .

0 0





y1
...
yr
yr+1

...
yn


−



c1
...
cr
cr+1

...
cm


.

The last m− r differences are of the form

0−

 cr+1
...
cm


and do not depend on the unknown y. In other words, there is nothing we can do about those differences:
if some or all the ci for i = r + 1, . . . ,m are nonzero, we will not be able to zero these differences, and
each of them contributes a residual |ci| to the solution. In each of the first r differences, on the other hand,
the last n − r components of y are multiplied by zeros, so they have no effect on the solution. Thus, there
is freedom in their choice. Since we look for the minimum-norm solution, that is, for the shortest vector x,
we also want the shortest y, because x and y are related by an orthogonal transformation. We therefore set
yr+1 = . . . = yn = 0. In summary, the desired y has the following components:

yi =
ci
σi

for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .

When written as a function of the vector c, this is

y = Σ+c .

Notice that there is no other choice for y, which is therefore unique: minimum residual forces the choice
of y1, . . . , yr, and minimum-norm solution forces the other entries of y. Thus, the minimum-norm, least-
squares solution to the original system is the unique vector

x̂ = V y = V Σ+c = V Σ+UTb
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as promised. The residual, that is, the norm of ‖Ax−b‖when x is the solution vector, is the norm of Σy−c,
since this vector is related to Ax− b by an orthogonal transformation (see equation (9)). In conclusion, the
square of the residual is

‖Ax− b‖2 = ‖Σy − c‖2 =

m∑
i=r+1

c2i =

m∑
i=r+1

(uT
i b)2

which is the projection of the right-hand side vector b onto the complement of the range of A. ∆

4 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 3.1 works regardless of the value of the right-hand side vector b. When b = 0, that is, when the
system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (10)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null
space of A is also a solution, by definition), but it is obviously the one with the smallest norm.

Thus, x = 0 is the minimum-norm solution to any homogeneous linear system. Although correct, this
solution is not too interesting. In many applications, what is desired is a nonzero vector x that satisfies the
system (10) as well as possible. Without any constraints on x, we would fall back to x = 0 again. For
homogeneous linear systems, the meaning of a least-squares solution is therefore usually modified, once
more, by imposing the constraint

‖x‖ = 1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily admit
a unique solution. The following theorem provides a recipe for finding this solution, and shows that there is
in general a whole hypersphere of solutions.

Theorem 4.1 Let
A = UΣV T

be the singular value decomposition of A. Furthermore, let vn−k+1, . . . ,vn be the k columns of V whose
corresponding singular values are equal to the last singular value σn, that is, let k be the largest integer
such that

σn−k+1 = . . . = σn .

Then, all vectors of the form
x = α1vn−k+1 + . . .+ αkvn (11)

with
α2
1 + . . .+ α2

k = 1 (12)
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are unit-norm least squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

Note: when σn is greater than zero the most common case is k = 1, since it is very unlikely that different
singular values have exactly the same numerical value. When A is rank deficient, on the other case, it may
often have more than one singular value equal to zero. In any event, if k = 1, then the minimum-norm
solution is unique, x = vn. If k > 1, the theorem above shows how to express all solutions as a linear
combination of the last k columns of V .
Proof. The reasoning is very similar to that for the previous theorem. The unit-norm Least Squares
solution to

Ax = 0

is the vector x with ‖x‖ = 1 that minimizes
‖Ax‖

that is,
‖UΣV Tx‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to (theorem 1.2), this norm is
the same as

‖ΣV Tx‖

or, with y = V Tx,
‖Σy‖ .

Since V is orthogonal, ‖x‖ = 1 translates to ‖y‖ = 1. We thus look for the unit-norm vector y that
minimizes the norm (squared) of Σy, that is,

σ21y
2
1 + . . .+ σ2ny

2
n .

This is obviously achieved by concentrating all the (unit) mass of y where the σs are smallest, that is by
letting

y1 = . . . = yn−k = 0. (13)

From y = V Tx we obtain x = V y = y1v1 + . . . + ynvn, so that equation (13) is equivalent to equation
(11) with α1 = yn−k+1, . . . , αk = yn, and the unit-norm constraint on y yields equation (12). ∆


