
Compsci 101, Fall 2014 3.1 

Plan for the week: Week 2, Sept 1-5 
●  Understanding program structure 

Ø  Defining, testing, calling functions 
Ø  How to run a program, how someone runs yours 

●  Understanding more of Python the language 
Ø  Types: string, int, bool, float 
Ø  Operations on these, e.g., +, %, [:], and 
Ø  Control: conditionals and loops (Thursday) 

●  Course structure: APTs, labs, assignments 
Ø  Tools for enabling structure 

Compsci 101, Fall 2014 3.2 

Examples of functions 

Compsci 101, Fall 2014 3.3 

Functions explained 
●  In a calculator, sqrt: number in -> number out 

Ø  What is domain, what is range? 

●  In MSWord, word count: document -> number 
Ø  Domain is word doc, range is integer 

●  In browser, web: URL -> HTML formatted "page" 
Ø  Domain is valid URL, range is HTML resources 

●  In Python we see similar structure! 

Compsci 101, Fall 2014 3.4 

Abstracting over code: functions 
●  http://goo.gl/DfcPgI 
●  See snarf for class work as well 

●  These functions do not return values, they print 
Ø  Illustrates problem decomposition, but … 
Ø  Normally have each function return a value 
Ø  Normally use the return value in function call 



Compsci 101, Fall 2014 3.5 

Part of http://goo.gl/DfcPgI (and snarf) 

def eieio(): 
  print "Ee-igh, Ee-igh, oh!" 
     
def refrain(): 
  print "Old MacDonald had a farm,", 
  eieio() 
 
def had_a(animal): 
  print "And on his farm he had a",animal,",", 
  eieio() 

Lots of commas 

Compsci 101, Fall 2014 3.6 

Anatomy and Dissection of Print 
●  Print generates output to  a console, window, … 

Ø  Depends on how program invoked 
Ø  Basically used for: help with debugging and 

creating output for copy/paste, view 

●  Space inserted between comma-separated items 
Ø  Can use string concatentation, "hello"+str(x) 
Ø  If statement ends with comma, no newline 
Ø  Print anything that has a string representation… 

print "hello,",x,"what's up",y 

Compsci 101, Fall 2014 3.7 

Tracing program execution 
●  The def statement defines a function 

Ø  Creates a name that can be used in program 
Ø  Name encapsulates program statements, creates 

its own environment for running code 
• Variables, parameters, local to the function 

●  Function name and statements part of Python 
execution environment 
Ø  Can call or invoke the function 
Ø  If parameters needed, must pass values for each 
Ø  Visualize program execution: PythonTutor, brain 

Compsci 101, Fall 2014 3.8 

Abstraction over barnyards 
●  In OldMacPrint we have pig() and fox() … 

Ø  What's the same in these? What's different? 
Ø  Capture differences in parameters/variables 

●  Create new function:  
Ø  def verse(animal, noise) 

●  Look at pig() and fox() create new function 
Ø  Call: verse("horse", "neigh")  
Ø  Call: verse("cow", "moo") 

http://bit.ly/101fall14-0902-1  
 



Compsci 101, Fall 2014 3.9 

Nancy Leveson: Software Safety 
●  Mathematical and engineering 

aspects, invented the discipline 
Ø  Health care software 
Ø  MS Word, Airbus 360, … 

     “There will always be another 
software bug; never trust human life 
solely on software” huffington post?

    

●  Therac 25: Radiation machine 
Ø  http://en.wikipedia.org/wiki/

Therac-25, http://bit.ly/5qOjoH 
●  Software and steam engines 

Compsci 101, Fall 2014 3.10 

Compsci 101: Running Python 
●  What does it mean to run a program? 

Ø  What does clicking on app/program do? 
Ø  How do you run/test APT code, other Python 

code 
• Where does program start to execute/run? 

●  Control flow in Python 
Ø  Loops and if statements --- coming on Thursday 
Ø  Essential for writing real programs 

• But function calls are part of control flow 

Compsci 101, Fall 2014 3.11 

Functions that return values 
●  Most functions return values 

Ø  Example in Old MacDonald is "different" 
Ø  Some claim: all functions return values 

def inch2centi(inches): 
    return 2.54*inches 
 
xh = inch2centi(72) 

def pluralize(word): 
    return word + "es" 
 
pf = pluralize("fish") 

Compsci 101, Fall 2014 3.12 

What is an APT? BMI APT 
●  Automated/Algorithmic Problem Testing 

Ø  Write one function, 2-30 lines, solve a problem 
Ø  Tested automagically in Eclipse or the browser 
Ø  Test test test … Quality of code not an issue 

●   Start simple, build toward more complex 
Ø  What is a function? A function call? 
Ø  What is a parameter? Argument? 
Ø  How do you run/execute a program 



Compsci 101, Fall 2014 3.13 

How to solve an APT 
●  Two very, very, very important steps 

1.  How to solve the problem without computer 
 Paper, Pencil, (Calculator) 

2.  How to translate problem-solving to Python 

●  Both steps can be hard, vocabulary and language 
are initially a real barrier 
Ø  More Python experience, easier step 2 becomes 
Ø  With experience, step 2 can influence step 2 

●  Step 1 is key, without it you won’t get anywhere 

Compsci 101, Fall 2014 3.14 

Anatomy of a Python function 
def name(params): 
    body 

●  Define a function: name, parameters, body 
Ø  How do we decide on these?  
Ø  Do we need parameters? 
Ø  What does body of function do 

●  Functions provide a named abstraction over code 
Ø  Huh?  math.factorial(5)"hello".upper() 

Compsci 101, Fall 2014 3.15 

Functions: BMI (Body Mass Index) 
●  What is formula? How to use it? 

Ø  For one person can simply print the BMI 
• Make sure units are correct, formula right 

Ø  What if we want to validate data? 
Ø  What if we want to notify folks who might need 

guidance? 
 
def bmi(weight, height): 
   return 703.07 * weight/(height*height) 
if bmi(170,72) < 18.5:  
 print "underweight" 

call replaced by return 
value, why use function? 

Compsci 101, Fall 2014 3.16 

What does return statement do? 
●  Programs execute one line at a time 

Ø  After one statement finishes, the next executes 
Ø  Calling a function causes its code to execute 

• What happens in the code that calls the function? 

●  The value returned replaces the function call 
Ø  print math.sqrt(25.0) 
Ø  if bmi(170,72) < 18.5: print 
"underweight" 

●  What if nothing returned? 
Ø  None by default in Python 



Compsci 101, Fall 2014 3.17 

Re-use: Counting words in file 
def word_count(filename): 
    f = open(filename) 
    all = f.read() 
    words = all.split() 
    return len(words) 
if __name__ == "__main__": 
 name = "/data/romeo.txt" 
 print "# words in",name,  
 print "=",wordCount(filename) 

Compsci 101, Fall 2014 3.18 

Running Python Program/Module 
●  Python is an interpreter, platform specific 

Ø  So is Java, so is Android, … contrast compilers 
Ø  Python can execute a .py file, need a "launch 

point" 
●  Convention in Python and other languages 

Ø  Start with section labeled __main__, that's run 
if __name__ == "__main__": 

statements here 
statements here 

●  Boilerplate, don't memorize, let Eclipse do work! 

Compsci 101, Fall 2014 3.19 

Function calls: what is an API? 

http://www.enotes.com/shakespeare-quotes/vasty-deep  

Compsci 101, Fall 2014 3.20 

Eclipse Particulars 
●  Supports many languages: we care about Python 

Ø  PyDev perspective: Windows>Open 
Perspective>Other>… 

Ø  Also use console: Windows>Show 
View>Console 

Ø  Use PyDev console (right click console icon) 
 

●  Creating projects, Python Module 
Ø  Illustrated with examples in class 

●  Submitting and check via Ambient 
Ø  Illustrated with examples in class 



Compsci 101, Fall 2014 3.21 

A-Z, Soup to Nuts, APT all the way 
●  Where do we find what APTs are due this week? 

Ø  Web pages, Sakai v Google v bookmark 

●  Testing code for APTs supplied by 101 staff 
Ø  Snarf the project that provides testing harnass 
Ø  Don't call us, ETester.py will call you (your code) 

●  Refresh to see results.html 
Ø  Repeat until finished 

●  Submit using Ambient, Duke CS Eclipse plugin 

Compsci 101, Fall 2014 3.22 

Summary of Today 
●  Functions help in program/problem decomposition 

Ø  Each function does one thing only 
Ø  Functions typically return values 

• Song printing functions don't, they print 

●  Names, parameters, arguments, return values 
Ø  Functions execute, return replaces call point 
Ø  Calling code picks up and continues after call 

●  We'll see loops and conditionals on Thursday 

Compsci 101, Fall 2014 3.23 

Grace Murray Hopper (1906-1992) 
●  “third programmer on world's 

first large-scale digital computer” 
Ø  US Navy: Admiral 

     “It's better to show that 
something can be done and 
apologize for not asking 
permission, than to try to 
persuade the powers that be at 
the beginning” 

●  ACM Hopper award given for contributions before 35 
2010: Craig Gentry: http://www.youtube.com/watch?v=qe-zmHoPW30 
2011: Luis von Ahn 
2013: Pedro Felzenszwalb 
 Compsci 101, Fall 2014 3.24 

Duke Compsci: Grace Hopper 2013 


