
Compsci 101, Fall 2014 4.1

Plan for the week: Week 2, Sept 1-5
●  Understanding program structure

Ø  Defining, testing, calling functions
Ø  How to run a program, how someone runs yours

●  Understanding more of Python the language
Ø  Types: string, int, bool, float
Ø  Operations on these, e.g., +, %, [:], and
Ø  Control: conditionals and loops (Thursday)

●  Course structure: APTs, labs, assignments
Ø  Tools for enabling structure

Compsci 101, Fall 2014 4.2

A-Z, Soup to Nuts, APT all the way
●  Where do we find what APTs are due this week?

Ø  Web pages, Sakai v Google v bookmark

●  Testing code for APTs supplied by 101 staff
Ø  Snarf the project that provides testing harnass
Ø  Don't call us, ETester.py will call you (your code)

●  Refresh to see results.html
Ø  Repeat until finished

●  Submit using Ambient, Duke CS Eclipse plugin

Compsci 101, Fall 2014 4.3

Summary of Tuesday
●  Functions help in program/problem decomposition

Ø  Each function does one thing only
Ø  Functions typically return values

• Song printing functions don't, they print

●  Names, parameters, arguments, return values
Ø  Functions execute, return replaces call point
Ø  Calling code picks up and continues after call

●  We'll see loops and conditionals on Thursday

Compsci 101, Fall 2014 4.4

Grace Murray Hopper (1906-1992)
●  “third programmer on world's

first large-scale digital computer”
Ø  US Navy: Admiral

 “It's better to show that
something can be done and
apologize for not asking
permission, than to try to
persuade the powers that be at
the beginning”

●  ACM Hopper award given for contributions before 35
2010: Craig Gentry: http://www.youtube.com/watch?v=qe-zmHoPW30
2011: Luis von Ahn
2013: Pedro Felzenszwalb

Compsci 101, Fall 2014 4.5

Duke Compsci: Grace Hopper 2013

Compsci 101, Fall 2014 4.6

Python review
●  We have several types to store data/values

Ø  Different types for different purposes
Ø  Still need to explore how to use these types,

what operations can be used with each
Ø  Types: int, float, string, bool, list, file

●  We need to learn how to put types/values together
into programs/code:
Ø  Function was first step toward doing this
Ø  Need more

Compsci 101, Fall 2014 4.7

Anatomy of a Python float
●  A float is a floating point number

Ø  Internally doesn't have infinite precision,
Ø  Floats have arithmetic operations: *, /, +, -, **

●  Floats
Ø  There are largest, smallest floats, expressed in

terms of exponents, e.g., 1.79e+308, 2.22e-308
• Typically not an issue in Compsci 101

Ø  Don't compare f == g with floats
• Precision issues

Compsci 101, Fall 2014 4.8

Anatomy of a Python String
●  String is a sequence of characters

Ø  Functions apply to sequences: len, slice [:], others
Ø  Methods applied to strings [specific to strings]

•  st.split(), st.startswith(), st.strip(), st.lower(), …
•  st.find(), st.count()

●  Strings are immutable sequences
Ø  Characters are actually length-one strings
Ø  Cannot change a string, can only create new one

• What does .upper() do?

Ø  See resources for functions/methods on strings
●  Iterable: Can loop over it, Indexable: can slice it

Compsci 101, Fall 2014 4.9

Anatomy of Python List
●  String is a sequence of characters

Ø  Immutable, cannot change, but can copy
Ø  Lists are mutable

●  List is a sequence of values/objects
Ø  ['apple', 3.145, 45, True]
Ø  Indexable, like a string, using [:] and []
Ø  We'll see it's iterable too – loop over

●  Simple, but powerful way to structure data
Ø  Internal to a program, not like a file: external

Compsci 101, Fall 2014 4.10

Indexable summary
●  [0] is first element of string or list or indexable

Ø  If length of string is 7: 0,1,2,3,4,5,6 for indexes
Ø  History of zero-indexing in computer science
Ø  String access/read, List access/read/write
Ø  [-1] is the last element

●  [:] is a slice, returns a new sequence
Ø  [a:b] is start at a, up-to but not including b
Ø  [:x] starts at 0 and [x:] goes to end
Ø  [a:b:c] has a stride/step of c

Compsci 101, Fall 2014 4.11

APT Interlude
http://bit.ly/101fall14-0902-2

Compsci 101, Fall 2014 4.12

Some simple computational problems
●  How does calendar know it's a leap year?

Ø  Are all leap years hard-wired in?
Ø  Does each February determine "am I leap year"?

●  Readability metric: what level is this story?
Ø  Syllables, words, sentences, …
Ø  http://en.wikipedia.org/wiki/Readability_test

●  Student home-town data: where do you live?
Ø  Who is close, far, more

Compsci 101, Fall 2014 4.13

What years are leap years?
●  2000, 2004, 2008, …

Ø  But not 1900, not
2100, yes 2400!

Ø  Yes if divisible by
4, but not if
divisible by 100
unless divisible by
400! (what?)

def is_leap_year(year):
 if year % 400 == 0:
 return True

 if year % 100 == 0:
 return False
 if year % 4 == 0:
 return True
 return False

●  There is more than one way to skin a cat, but we
need at least one way

Compsci 101, Fall 2014 4.14

Python if statements and Booleans
●  In python we have if: else: elif:

Ø  Used to guard or select block of code
Ø  If guard is True then, else other

●  What type of expression used in if/elif tests?
Ø  ==, <=, <, >, >=, !=, and, or, not, in
Ø  Value of expression must be either True or False
Ø  Type == bool, George Boole, Boolean,

●  Look at more examples

Compsci 101, Fall 2014 4.15

Three versions of is_vowel
def is_vowel(ch):
 if ch =='e':
 return True
 if ch == 'a':
 return True
 if ch == 'i':
 return True
 if ch == 'o':
 return True
 if ch == 'u':
 return True
 return False

def is_vowel(ch):
 if ch in "aeiou":
 return True
 else
 return False

def is_vowel(ch):
 return "aeiou".count(ch) > 0

Compsci 101, Fall 2014 4.16

Lynn Conway
See Wikipedia and lynnconway.com
●  Joined Xerox Parc in 1973
Ø  Revolutionized VLSI design with

Carver Mead

●  Joined U. Michigan 1985
Ø  Professor and Dean, retired '98

●  NAE '89, IEEE Pioneer '09

●  Helped invent dynamic scheduling
early '60s IBM
Ø  Transgender, fired in '68

Compsci 101, Fall 2014 4.17

Data interlude
●  Exploring what we can do with latitude and

longitude, websites, APIs, simple Python scripts
Ø  Sometimes when data is about us it's …

●  We'll use batchgeo.com to create a visual
Ø  Copy/paste, see what happens?
Ø  Download into Excel and repeat?

●  Who travels the greatest distance to Duke?
Ø  At least where are they from, if not who

Compsci 101, Fall 2014 4.18

Visualizing and Analyzing Data
●  Sometimes data is dirty

Ø  We clean it. By hand, or with scripts/programs
Ø  There are data cleaning libraries (what's that?)

●  For more in-depth analysis need other tools
Ø  Compsci course Everything Data
Ø  Develop your own, use Python!
Ø  Sometimes need statistics, sometimes need

artistic/aesthetic skills

Compsci 101, Fall 2014 4.19

Data analyzed with Python
●  Open file of data in csv format

Ø  Where do we get this? Why edit first?
●  Loop over file, separate each line

Ø  Convert string to list, index to get parts

●  Find code to determine distance using (lat, long)
Ø  Google is your friend, what's the query?

http://bit.ly/101fall14-0904-data

Compsci 101, Fall 2014 4.20

Simple loops, more later
for x in "abcdefg":
 code
for ch in ['a','b','c]:
 code
for line in file:
 code

●  As with if, def, the : separates body

Ø  In Python indentation is important
Ø  Loop repeats body once for each IN element

