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Hidden Markov models 
Sean R Eddy 

'Profiles' of protein structures and sequence alignments 
can detect subtle homologies. Profile analysis has been 
put on firmer mathematical ground by the introduction of 
hidden Markov model (HMM) methods. During the past year, 
applications of these powerful new HMM-based profiles have 
begun to appear in the fields of protein-structure prediction 
and large-scale genome-sequence analysis. 
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Abbreviations 
3D three-dimensional 
HMM hidden Markov model 

I n t r o d u c t i o n  
Computational analysis is increasingly important for infer- 
ring the functions and structures of  proteins [1] because 
the speed of D N A  sequencing has long since surpassed 
the rate at which the biological function of sequences can 
be elucidated experimentally. Established sequence com- 
parison algorithms detect significant similarities between 
known database sequences and 35-80% of new proteins, 
depending on the organism. Increasing this percentage 
is of the utmost importance. An increase of a single 
percentage point may mean learning something usefld 
about an additional 700 human proteins hv the time 
elucidation of the sequence of the human genomc nears 
completion round about the year 2002. 

Pairwise sequence comparison methods such as BLAST 
and FASTA generally assume that all amino acid positions 
are equally important even though a great deal of position- 
specific information is usually available for a protein 
or protein family of interest. Muhiple alignments of 
protein sequence families indicate residues that are more 
conserved than others, and the points at which insertions 
and deletions are more frequent. Three-dimensional (3D) 
structural information allows structural environments to 
be taken into account when scoring aligned residues, 
and allows insertions and deletions to be expected more 
frequently in surface loops than in core secondary structure 
elements. A 'profile' (defined as a consensus primary 
structure model consisting of position-specific residue 
scores and insertion or deletion penalties) is an intuitive 
step beyond the pairwise seqt, ence alignment methods. 
Profile methods based either on multiple sequence 
alignments [2~J,] or on 3D structures [5,6] have been 

independently developed by a number  of groups, and are 
widely used. 

T h e  problem with profiles is that they are complicated 
models with many free parameters. One is faced with 
a number  of difficult problems: what are the best ways 
to set the position-specific residue scores, to score gaps 
and insertions, and to combine structural and multiple 
sequence information? Until recently, these questions 
have generally been addressed in an ad hoc fashion. An 
ad hoc scoring system can be expertly tuned by trial and 
error to be adequate, but a consistent mathematical basis 
is still desired. 

New profile methods using 'hidden Markov models '  
(HMMs) have been introduced to address the above 
questions. In this review, I will explain what t IMMs are, 
describe their strengths and limitations, and highlight how 
HMM-based profiles are beginning to be used in protein 
structure prediction and large-scale genome sequence 
analysis. 

H i d d e n  M a r k o v  m o d e l s  
David Haussler, Anders Krogh and their colleagues at 
University of California, Santa Cruz recognized that all 
the profile methods could be expressed as HMMs. Their  
lucid technical report was widely circulated, and the work 
uhimately appeared in the open literature in early 1994 
[7°']. By this time, other groups were already exploring 
HMM-based profile methods [8,9°]. 

Hidden Markov models are a general statistical modeling 
technique for 'linear' problems like sequences or time 
series and have been widely used in speech recognition 
applications for twenty years. HMMs had been used 
before in computational sequence analysis [10], includ- 
ing applications to protein structural modeling [11,12]. 
Hat, ssler's work was aimed so clearly at the popular 
profile analysis methods that it elevated HMMs into the 
consciousness of a wider community. Within the HMM 
formalism, it is possible to apply formal, fully probabilistic 
methods to profiles and gapped sequence alignments. 

W h a t  is an  H M M ?  
T h e  key idea is that an HMM is a finite model that 
describes a probability distribution over an infinite number  
of possible sequences. 

A wonderfully clear description of H M M  theory has 
been written by Rabiner [13]. One speaks of  an HMM 
'generating'  a sequence. The  HMM is composed of  a 
number  of states, which might correspond to positions 
in a 3D structure or columns of a multiple alignment. 
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Each state ' emi t s '  symbols (residues) according to symbol-  
emiss ion probabilit ies,  and the states are in terconnected  
by state-transit ion probabili t ies.  Starting from some initial 
state, a sequence of states is generated by moving from 
state to state according to the state-transition probabil i t ies  
until an end state is reached. Each state then emits  
symbols  according to that state's emission probabi l i ty  
dis tr ibut ion,  creating an observable sequence of  symbols.  
Figure  1 shows a s imple H M M  for a heterogeneous  D N A  
sequence  [101. 
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A simple hidden Markov model. A two-state HMM describing DNA 
sequence with a heterogeneous base composition is shown, following 
work by Churchill [10]. (a) State 1 (top left) generates AT-rich 
sequence, and state 2 (top right) generates CG-rich sequence. State 
transitions and their associated probabilities are indicated by arrows, 
and symbol emission probabilities for A,C,G and T for each state are 
indicated below the states. (For clarity, the begin and end states 
and associated state transitions necessary to model sequences 
of finite length have been omitted.) (b) This model generates a 
state sequence as a Markov chain and each state generates a 
symbol according to its own emission probability distribution (c). The 
probability of the sequence is the product of the state transitions and 
the symbol emissions. For a given observed DNA sequence, we are 
interested in inferring the hidden state sequence that 'generated' it, 
that is, whether this position is in a CG-rich segment or an AT-rich 
segment. 

In general, when using H M M s  we are interested in 
solving one of three problems [13]. First,  given an existing 
H M M  and an observed sequence ,  we want  to know the 
probabil i ty  that the H M M  could generate the sequence 
(the scoring problem). Second,  we want to know the 
optimal state sequence that the H M M  would use to 
generate  the sequence (the a l ignment  problem). Third,  
given a large amount  of data, we want to find the 
structure and parameters of the H M M  which best  account 
for the data (the training problem).  Haussler  and his 
col leagues '  insight was that profiles can be rewritten as 
HMMs,  and that these problems are exactly analogous to 
the problems of scoring sequences  with profiles, finding 
optimal sequence-prof i le  al ignments,  and constructing 
profiles from unaligned as well as aligned protein or DNA 
sequence data. 

HMM-based profiles 
An example  of an H M M - b a s e d  profile is shown in 
Figure 2. Most of the columns of a mul t ip le  sequence 
a l ignment  are assigned to 'ma tch '  states. Each of the 
match states has an emission distr ibution that reflects 
the probabil i ty of seeing a given residue in that position. 
Each match state is also accompanied  by two other states. 
A ' de le te '  state emits  nothing, allowing a column to be 
skipped,  which is a dele t ion relative to the consensus. 
An ' inser t '  state exists be tween  each pair of match states 
and it has a state transition to itself. Th is  allows one or 
more symbols to be inserted at any point relative to the 
consensus.  

T h e  H M M  formalism makes  two major contributions. 
First,  HMMs can be trained from unaligned as well 
as aligned data, whereas standard profiles require a 
pre-exist ing mult iple al ignment .  Second, HMM-based  
profiles use a justifiable statistical t rea tment  of insertions 
and deletions. In standard profiles, it is impossible to 
de te rmine  optimal inser t ion/delet ion scores except  by trial 
and error, and the statistical significance of an a l ignment  
has to be evaluated by empirical  methods.  

Since handling insertions and dele t ions  is a major problem 
in recognizing highly d ivergent  protein sequences,  the 
recasting of profiles as H M M s  promises a significant 
increase in the power of profiles to recognize distantly 
related structural homologs. 

Why are they called hidden Markov models? T h e  
sequence  of states is a Markov chain, because the choice 
of the next  state to occupy is dependen t  on the ident i ty  
of  the current  state. However,  this state sequence  is not 
observed:  it is hidden.  Only the symbol sequence  that 
these h idden states generate is observed. T h e  most l ikely 
state sequence must  be inferred from an a l ignment  of the 
H M M  to the observed sequence.  

Assumptions of HMMs and profiles 
HMM-based  profiles make two important  assumptions. 
First,  pairwise (or higher order) correlations between 
residues are ignored. An H M M  is a primary structure 
model.  Tha t  is not to say that H M M s  are necessarily 
just  sequence models: the 3D structural environment  of 
a position can be taken into account. For instance, 3I) 
profiles, in which the residue scores are de tc rmined  by 
a position's structural env i ronment  and have nothing to 
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An HMM-based profile. An example of an HMM-based profile of three 
positions is shown, following the model introduced by Krogh et al. 
[7°°]. Each important column of a multiple sequence alignment (top) 
is modeled by a triplet of states: match (M), insert (I), and delete (D). 
For each modeled column of the alignment, there are 49 parameters: 
nine state transition probabilities (arrows), 20 match state symbol 
emission probabilities (corresponding to the bracketed amino acid 
residues [single letter code]), and 20 insert state symbol emission 
probabilities (usually not learned from the alignment, but instead 
kept fixed at some background distribution). For the sake of clarity in 
this example, all the insert symbol emissions are shown set equally 
to 0.05, underlining the point that the inserts generate essentially 
'random' residue sequence. The state transition probabilities will 
generally tend to favor a 'main line' through the match states (bold 
arrows) over the rarer paths containing insertions and deletions 
(dashed arrows). 

do with sequence [5], can be usefully implemented as 
HMMs. Similarly, many of the protein 'inverse folding' 
methods that use a so-called 'frozen approximation' [14] 
(so that dynamic programming algorithms can be used for 
alignment and scoring) can be expressed usefully as HMM 
methods. 

Second, HMMs assume that sequences are generated 
independently from the model. Real biosequences are 
related by common evolutiona U descent and are highly 
non-independent. This is probably the major outstanding 
problem with any profile method. My colleagues and I [9"] 
have described alternatives to maximum likelihood HMM 
training methods that compensate for the biased sequence 
sampling caused by evolutiona~" trees, but these methods 
are indirect and essentially amount to new HMM-style 
sequence-weighting methods. Mitchison and Durbin [15] 
explored a tour de force fusion of maximum likelihood 
phylogeny reconstruction with hidden Markov models, but 
the algorithms used are not yet computationally practical. 

H M M - b a s e d  mult iple sequence  a l ignment  
Unlike profiles, HMMs can be trained from a set 
of unaligned example sequences, producing a multiple 
alignment in the process. The  speech recognition field 
provides a well-studied training algorithm called the 

Baum-Welch algorithm, which Krogh etal. [7"] employed. 
Baldi et al. [8,16] have described the use of an alternative 
HMM training algorithm using gradient descent which 
seems equally effective. Both approaches find locally 
optimal alignments, not globally optimal ones, and they 
occasionally get stuck in incorrect optima. Krogh etal. [7 "°] 
used a 'noise injection' heuristic to avoid local optima. I 
have described a simulated annealing variant of Krogh's 
approach which is even less prone to local optima [17]. 
This and related work has shown that HMM methods 
can be used to sample suboptimal sequence alignments 
according to their probability [18",19"]. 

HMM-based multiple alignment is interestingly different 
from most previous multiple alignment methods. The  
scoring parameters as well as the alignment are initially 
unknown. Alignment, therefore, does not require diffi- 
cult a priori  choices for scoring parameters. Also, the 
HMM approach avoids the computationally intractable 
many-to-many multiple sequence alignment problem by 
recasting it as a tractable many-to-one sequence-HMM 
alignment problem. Indeed, aligning sequences to a 
common consensus model is intuitively much closer to 
what we want a multiple alignment to represent in the 
first place. Current HMM methods are approaching the 
accuracy of existing approaches, and will often outperform 
other multiple alignment algorithms in complicated cases 
involving many gaps and insertions [17]. 

H M M - b a s e d  protein homolog  recognit ion 
Krogh et al. showed that the first HMM-based profiles 
were slightly superior to standard profiles for protein 
bomolog recognition [7"]. Tim Hubbard and his col- 
leagues applied HMM methods in combination with 
secondary-structure prediction tools in a protein structure 
prediction competition in 1994. Hubbard's predictions 
were about as accurate as the predictions made by the 
much more complicated threading algorithms for protein 
inverse folding [19"]. Hubbard's HMMs were exclusively 
based on sequence alignments. Because HMMs are well 
suited for smoothly combining sequence and structural 
environment information, further HMM-based incursions 
into the inverse folding and threading fields may be 
expected. 

A drawback of the first HMM-based profile methods was 
that they required a large number of sequences (>100) 
for good homolog recognition. Significant advances have 
now been made in incorporating prior information about 
amino acid substitution probabilities into HMMs, using 
either 'mixture Dirichlet' priors [20,21] or Dayhoff PAM 
(per cent accepted mutation) substitution matrices [22]. 
Effective HMMs for homolog recognition can now be 
constructed from a handful of sequences. 

Pairwise similarity search algorithms (BLAST and FASTA) 
are effective on relatively disorganized databases. In 
contrast, because HMMs are based on aligned sequence 
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families instead of single sequences, the application of 
HMM-based profiles to large-scale genome or database 
analysis requires hierarchical second generation databases 
of protein families and sequence alignments. In collab- 
oration with the producers of the hierarchically orga- 
nized SCOP (structural classification of proteins) database 
[23], Erik Sonnhammer has produced a database of 
domain sequence alignments and hidden Markov models 
(E Sonnhammer, SR Eddy, unpublished data). This 
alignment database currently models 100 different protein 
domain families and is available on the World Wide Web 
(http://www.sanger.ac.uk/Pfam). HMM-based analysis of 
protein domains and DNA repeat families is beginning 
to supplement BLAST analysis of nematode, yeast, and 
human DNA sequencing efforts at the genome centers at 
Washington University in St. Louis, USA, and the Sanger 
Centre in Cambridge, UK. 

Conclusions 
Hidden Markov model based profiles have resolved 
many of the problems associated with standard profile 
analysis. HMMs provide a consistent theory for scoring 
insertions and deletions, and a consistent framework for 
combining structural and sequence information. HMM- 
based multiple sequence alignment is rapidly improving. 
HMM-based homolog recognition is already sufficiently 
powerful for HMM methods to compare favorably to 
much more complicated threading methods for protein 
inverse folding. Software for HMM-based profiles that 
will run on almost any UNIX platform is freely available 
from http://www.cse.ucsc.edu/research/compbio/sam.html 
or from http://genome.wustl.edu/eddy/hmmcr.html. 

It is important to bear in mind that HMM-based 
profiles are a very special case of HMM approaches. 
HMM methods are being pressed into use for a variety 
of biological problems, such as gene prediction [24°], 
protein secondary structure prediction [25], and even the 
construction of radiation hybrid maps [26]. 

The  philosophy we adopt in using HMMs is that 
complicated structure-sequence analysis problems are 
best addressed as statistical inference problems using 
full probabilistic models. An increasingly active field of 
research is the development of other full probabilistic 
approaches for problems more complicated than HMMs 
can handle, such as RNA secondary structure analysis 
using stochastic context-free grammars [27,28] or dealing 
with pairwise correlation in protein sequences (i.e. thread- 
ing methods and their kin) using Markov random fields 
[29°,30]. It is useful to think about these and other full 
probabilistic models in the framework of the Chomsky 
hierarchy of formal grammars, introduced by Chomsky for 
problems in computational linguistics [31]. Scads [32] has 
written an excellent introduction to the use of linguistic 
approaches in biosequence analysis. 

In just two years, HMM-based profiles have moved from 
pure theory to practical application in protein-structure 
prediction and large-scale genome sequence analysis. Bits 
of HMM theory, such as the use of mixture Dirichlct 
priors, are being mainstreamed into other analysis methods 
[33]. As a devout partisan of HMMs and fldl probabilistic 
approaches, I think that the usefulness and range of HMM 
applications in structural biology can only continue to 
grow. 
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