SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2014

E:- DUKE
COMPUTER SCIENCE

Announcements (Thu., Oct. 2)

due next Tueday

in class next Thursday (Oct. 9)
* Open-book, open-notes
* Same format as (from last year)
* Sample solution also posted on Sakai

http://xkcdsw.com/1105

A motivating example

Parent (parent, child)

Homer
Homer
Marge
Marge
Abe

* Example: find Bart’s ancestors

* “Ancestor’ has a recursive definition

e X isY’s ancestor if
* XisY’sparent, or

Bart
Lisa
Bart
Lisa
Homer

Abe

Ape

Abe

Homer

Bart

e XisZ’sancestorand Z is Y’s ancestor

Marge

]

Lisa

Recursion in SQL

* SQL2 had no recursion
* You can find Bart’s parents, grandparents, great

grandparents, etc.
SELECT pl.parent AS grandparent
FROM Parent pl, Parent p2
WHERE pl.child = p2Z2.parent
AND p2.child = 'Bart';

* But you cannot find all his ancestors with a single query

* SQL3 introduces recursion
clause
* Implemented in PostgreSQL (

)

Ancestor query in SQL3

(anc, desc)
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc

FROM al, a2 Define a
WHERE al.desc = a2.anc)) a relation
SELECT anc recursively
FROM Ancestor
WHERE desc = 'Bart'; Query using the relation

defined in WITH clause

Fixed point of a function

o If f:T — T isafunctionfromatypeT toitself, a
of f is avalue x such that f(x) = x

« Example: What is the fixed point of f(x) = x/2?
* 0,because f(0) =0/2=0
* To compute a fixed point of f
e Start with a “seed”: x « x,
« Compute f(x)
* If f(x) = x, stop; x is fixed point of f
« Otherwise, x « f(x); repeat
e Example: compute the fixed point of f(x) = x/2
* With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... = 0

“ Doesn’t always work, but happens to work for us!

Fixed point of a query

* A query q is just a function that maps an input table
to an output table, so a of gisatableT
suchthatq(T) =T

* To compute fixed point of g
 Start with an empty table: T < @

* Evaluate g overT
* If theresultisidentical to T, stop; T is a fixed point
* Otherwise, let T be the new result; repeat

@ Starting from @ produces the
(assuming q is monotone)

Finding ancestors

Homer Bart

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) Homer Lisa

UNION Marge Bart
(SELECT al.anc, a2.desc

FROM Ancestor al, Ancestor a2
WHERE al.desc = aZ2.anc)) Abe Homer

* Think of the definition as Ancestor = g(Ancestor) Ape Abe

Marge Lisa

Homer Bart

anc Homer Lisa
anc Homer Bart Marge Bart

Homer Bart Homer Lisa Marge Lisa

Marge Bart

—_—
Marge Lisa

Marge Bart

Marge Lisa Abe Homer

Abe Homer Ape Abe

Ape Abe Abe Bart
Abe Lisa

Ape Homer

Intuition behind fixed-point iteration

* Initially, we know nothing about ancestor-
descendent relationships

* In the first step, we deduce that parents and
children form ancestor-descendent relationships

* In each subsequent steps, we use the facts
deduced in previous steps to get more ancestor-
descendent relationships

* We stop when no new facts can be proven

Linear recursion

« With linear recursion, a recursive definition can make
only one reference to itself

* Non-linear

(anc, desc)
((SELECT parent, child FROM Parent)

UNION
(SELECT al.anc, a2.desc
FROM al, az2
WHERE al.desc = a2.anc))
e Linear

(anc, desc)
((SELECT parent, child FROM Parent)

UNION
(SELECT anc, child
FROM , Parent

WHERE desc = parent))

Linear vs. non-linear recursion

* Linear recursion is easier to implement

* For linear recursion, just keep joining newly generated
Ancestor rows with Parent

* For non-linear recursion, need to join newly generated
Ancestor rows with all existing Ancestor rows

* Non-linear recursion may take fewer steps to
converge, but perform more work
* Exampleta->b—>c—>d—e
* Linear recursion takes 4 steps

* Non-linear recursion takes 3 steps
* More work: e.g., a — d has two different derivations

ool ¢
SRE

http://xkcdsw.com/3080

Mutual recursion example

* Table Natural (n) contains 1, 2, ..., 100

 Which numbers are even/odd?
* An odd number plus 1is an even number
* An even number plus 1is an odd number
* 1is an odd number

WITH RECURSIVE) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+l1 FROM)),

RECURSIVE) AS
((SELECT n FROM Natural WHERE n = 1)
UNION

(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM)))

Semantics of WLTH

* Q¢,...,Q, mayrefertoR4, ..., R,

e Semantics
LRy« ®,....,R, < 0O

2. Evaluate Q4, ..., @, using the current contents of R, ..., Ry;:
R?ew < Qli "'!Rgew < Qn

3. If Rj**Y + R; for somei
3.1. Ry « RT®Y,...,R,, < R}*%
3.2. Goto 2.

4. Compute Q using the current contents of Ry, ... R,
and output the result

Computing mutual recursion

WITH RECURSIVE) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM)),

RECURSIVE) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM)))
0)

 Even = 0, Odd

Fixed points are not unique

Homer Bart

Homer Lisa

(anc, desc) Homer Bart Marge Bart
((SELECT parent ’ child FROM Homer Lisa Marge Lisa
Parent) Marge Bart Abe Homer
UNION Marge Lisa Ape Abe
(SELECT al.anc, a2.desc
Abe Homer Abe Bart
FROM al, a2 A D
e e .
WHERE al.desc = a2.anc)) P Abe Lisa
Ape Homer
Ape Bart
Ape Lisa

Bogus Bogus

< Butif g is monotone, then
all these fixed points must contain the fixed point we
computed from fixed-point iteration starting with @
* Thus the unique fixed point is the “natural” answer

Mixing negation with recursion

* If g is non-monotone
* The fixed-point iteration may flip-flop and never converge

* There could be multiple minimal fixed points—we
wouldn’t know which one to pick as answer!

* Example: popular users (pop = 0.8) join either
Jessica’s Circle or Tommy’s

* Those notin Jessica’s Circle should be in Tom’s

* Those notin Tom’s Circle should be in Jessica’s

- WITH RECURSIVE (uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM)),

RECURSIVE (uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM))

19

Fixed-point iter may not converge

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

\uid | name | age | pop
142 Bart 10 0.9
121 Allison 8 0.85

TommyCircle JessicaCircle TommyCircle JessicaCircle

Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

\uid | name | age | pop
142 Bart 10 0.9
121 Allison 8 0.85

TommyCircle JessicaCircle

142 121

20

Legal mix of negation and recursion

e Construct a
 One node for each table defined in WITH
* Adirected edge R — S if R is defined in terms of S

* Label the directed edge “—"" if the query defining R is
not monotone with respect to S

* Legal SQL3 recursion: no cycle with a “—"" edge
* Called

* Bad mix: a cycle with at least one edge labeled “—"”

Anc@ TommyCircle JessicaCircle
Legal! \/

Stratified negation example

* Find pairs of persons with no common ancestors

WITH RECURSIVE (anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT al.anc, a2.desc
FROM al, a2
WHERE al.desc = a2.anc)),

(person) AS A .
((SELECT parent FROM Parent) UNION ncestor
(SELECT child FROM Parent)),

(personl, person2) AS

((SELECT pl.person, p2.person Person

FROM pl, p2

WHERE pl.person <> p2.person)

EXCEPT NoCommonAnc
(SELECT al.desc, a2.desc

FROM al, az2

WHERE al.anc = a2.anc))

SELECT * FROM NoCommonAnc:;

Evaluating stratified negation

 The of a node R is the maximum number of
“—" edges on any path from R
in the dependency graph
* Ancestor: stratum o
* Person: stratum o
* NoCommonAnc: stratum 1

 Evaluation strategy
* Compute tables lowest-stratum first

* For each stratum, use fixed-point iteration on all nodes
in that stratum
e Stratum o0: Ancestor and Person
e Stratum 1: NoCommonAnc

® Intuitively, there is

Summary

* SQL3 WITH recursive queries

* Solution to a recursive query (with no negation):
unique minimal fixed point

* Computing unique minimal fixed point: fixed-point
iteration starting from @

* Mixing negation and recursion is tricky

* lllegal mix: fixed-point iteration may not converge; there
may be multiple minimal fixed points

* Legal mix: stratified negation (compute by fixed-point
iteration stratum by stratum)

