XML-Relational
Mapping

Introduction to Databases
CompSci 316 Fall 2014

E:- DUKE
COMPUTER SCIENCE

Approaches to XML processing

* Text files/messages

* Specialized XML DBMS

« Tamino (Software AG), BaseX, eXist, Sedna, ...
* Not as mature as relational DBMS

* Relational (and object-relational) DBMS

 Middleware and/or extensions

* IBM DB2’s pureXML, PostgreSQL’s XML
type/functions...

Mapping XML to relational

 Store XML in a (Character Large OBject)
column
* Simple, compact
* Full-text indexing can help (often provided by DBMS
vendors as object-relational “extensions”)

* Poor integration with relational query processing
* Updates are expensive

* Alternatives?

well-formed XML — generic relational schema
mapping for graphs
mapping for trees
mapping for trees

valid XML — special relational schema based on DTD

Node/edge-based: schema

Key:
* Attribute order does not matter
Keys:
* pos specifies the ordering of children
* child references either Element(eid) or Text(tid)

* tid cannot be the same as any eid
“ Need to “invent” lots of id’s

Need indexes for efficiency, e.g., Element(tag),
Text(value)

Node/edge-based: example

<bibliography> ElementChild

<book ISBN="ISBN-10" price="80.00"> Element -

<title>Foundations of Databases</title>

<author>Abiteboul</author> -_ 1
<author>Hull</author> b1 b el 1 02
<author>Vianu</author> ibliography
<publisher>Addison Wesley</publisher> el book el 2 e3
<year>1995</year>
</bZok>". 7 e2 title el 3 e4
</bibliography> e3 author el 4 e5
e4 author el 5 eb
e5 author el 6 e’
Attr’bute - eb publisher e2 1 t0
ISBN ISBN-10
n . 0 e7 year e3]. t].
e price 8 ol 1 €2
e5 1 t3
78 (T S
Text eb 1 té
Foundations of Databases
e’ 1 t5

tl Abiteboul

t2 Hull

t3 Vianu

té4 Addison Wesley
t5 1995

Node/edge-based: simple paths

« [[title
« SELECT eid FROM Element WHERE tag = 'title';

e [[section/title

« SELECT e2.eid
FROM Element el, ElementChild c, Element e2

WHERE el.tag = 'section'
AND e2.tag = 'title'
AND el.eid = c.eid
AND c.child = e2.eid;
® Path expression becomes joins!
* Number of joins is proportional to the length of the path

expression

Node/edge-based: complex paths

 /[/bibliography/book [@price

« SELECT a.attrValue
FROM Element el, ElementChild cl,
Element e2, Attribute a
WHERE el.tag = 'bibliography'
AND el.eid = cl.eid AND cl.child = e2.eid
AND e2.tag = 'book'

AND e2.eid = a.eid
AND a.attrName = 'price';

Node/edge-based: descendent-or-self

e [/book//title

Interval-based: schema

* left is the start position of the element
right is the end position of the element

level is the nesting depth of the element (strictly
speaking, unnecessary)

Key is

Key is

Key is

10

Interval-based: example

<bibliography>
<book ISBN="ISBN-10" price="80.00"> bibliography 1,999,1
<title>4Foundations of Databases</title>
<author>7Abiteboul</author> /////}§§Sss:::\\\
<author>10Hull</author> book 2,21,2

<author>13Vianu</author>
<publisher>16Addison Wesley</publisher>
<year>191995</year>
</book>
</bibliography>

o o o
title authorauthor author publisher year

3,5,3 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

®Where did ElementChild go?
* ¢, is the parent of e, iff:

|e,.left, e;.right] D |e,.left, e,.right], and
e,.level = e,.level — 1

Interval-based: queries

e [[section/title

« SELECT e2.left
FROM Element el, Element e?2
WHERE el.tag = 'section' AND e2.tag = 'title'

AND el.left < e2.left AND e2.right < el.right
AND el.level = e2.level-1;

® Path expression becomes “containment’ joins!
* Number of joins is proportional to path expression length

 [/book//title

11

Summary so far

Node/edge-based vs. interval-based mapping

* Path expression steps
* Equality vs. containment join

* Descendent-or-self
* Recursion required vs. not required

13

Path-based mapping: approach 1

Label-path encoding: paths as strings of labels
* Element(pathid, left, right, ...), Path(pathid, path),

* path is a string containing the sequence of [abels on a
path starting from the root

* Why are left and right still needed?

Element Path

Cpathid | date | righe |-
1 1 999 " /bibliography

2 2 21 - 2 /bibliography/book

3 3 5 - 3 /bibliography/book/title

4 6 8 - 4 /bibliography/book/author

4 9 11

4 12 14

Label-path encoding: queries

* Simple path expressions with no conditions

* Perform string matching on Path
Join qualified pathid’s with Element

Evaluate / /book/title
Evaluate / /book/publisher[text()="Prentice Hall']

Must then ensure title and publisher belong to
the same book (how?)

“ Path expression with attached conditions needs to be
broken down, processed separately, and joined back

Path-based mapping: approach 2

* Each component of the id represents the order of
the child within its parent

* Unlike label-path, this encoding is “lossless”

bibliographyogl

title authorauthor author publisher year
1.1.1 1.1.2 1.1.2 1.1.4 1.1.5 1.1.6

Dewey-order encoding: queries

* Examples:

* Works similarly as interval-based mapping

» Except parent/child and ancestor/descendant relationship are
checked by prefix matching

* Serves a different purpose from label-path encoding
* Any advantage over interval-based mapping?

Summary

* XML data can be “shredded” into rows in a
relational database

* XQueries can be translated into SQL queries

* Queries can then benefit from smart relational indexing,
optimization, and execution

* With schema-oblivious approaches, comprehensive
XQuery-SQL translation can be easily automated

* Different data mapping techniques lead to different
styles of queries

* Schema-aware translation is also possible and
potentially more efficient, but automation is more
complex

