
Convolution, Smoothing, and Image Derivatives

Carlo Tomasi

Computer vision operates on images that usually come in the form of arrays of pixel values. These
values are invariably affected by noise, so it is useful to clean the images somewhat by an operation, called
smoothing, that replaces each pixel by a linear combination of some of its neighbors. Smoothing reduces the
effects of noise, but blurs the image. When noise suppression is the goal, blurring is an undesired side-effect.
In other applications, when it is desired to emphasize slow spatial variations over abrupt changes, blurring
is beneficial. In yet another set of circumstances, these abrupt changes are themselves of interest, and then
one would like to apply an operator that is in some sense complementary to smoothing (in signal processing,
this operator would be called a high-pass filter).

All these operations take the form of what is called a convolution. The closely related but more imme-
diately intuitive notion of correlation is introduced first in this note.

While an image is an array of pixel values, it is often useful to regard it as a sampling of an underlying
continuous function of spatial coordinates. This function is the brightness of light impinging onto the camera
sensor, before this brightness is measured and sampled by the individual sensor elements. Partial derivatives
of this continuous function can be used to measure the extent and direction of edges, that is, abrupt changes
of image brightness that occur along curves in the image plane. The estimation of these derivatives can again
be cast as a convolution. The next section uses a naive version of differentiation to motivate convolution.
The last section of this note shows how derivatives are estimated more accurately.

What follows refers to a coordinate frame with its origin at the upper-left image pixel, which has co-
ordinates (1, 1) (to conform with matrix notation). The vertical axis is called x and points downward, and
the horizontal axis is called y and points to the right. This convention makes (x, y) pairs consistent with
the usual indexing of rows and columns as (i, j), as done in linear algebra, so increasing x corresponds to
increasing i, and increasing y corresponds to increasing j.

1 Correlation

Suppose that we want to determine where in the image there are vertical edges. Since an edge is an abrupt
change of image intensity, we might start by computing the derivatives of an image in the horizontal direc-
tion. Pixels where the derivatives have a large magnitude, either positive or negative, are elements of vertical
edges. The partial derivative of a continuous function f(x, y) with respect to the “horizontal” variable y is
defined as the local slope of the plot of the function along the y direction or, formally, by the following limit:

∂f(x, y)

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
.

An image from a digitizer is a function of a discrete variable, so we cannot make ∆y arbitrarily small:
the smallest we can go is one pixel. If our unit of measure is the pixel, we have

∆y = 1

1

and a rather crude approximation to the derivative at an integer position x = i, y = j is therefore

∂f(x, y)

∂y

∣∣∣∣
x=i,y=j

≈ f(i, j + 1)− f(i, j) .

We will see much better ways to estimate image derivatives, but this example is good enough for introducing
correlation and convolution.

Here is a piece of pseudo-code that computes this approximation along row i in the image:

for j = jstart, . . . , jfinish do
d(i, j)← f(i, j + 1)− f(i, j)

end for

Notice, in passing, that the last value of j for which this computation is defined is the next-to-last pixel in
the row, so jfinish must be defined appropriately.

The computation above amounts to taking a little two-cell mask (or template or kernel) k with the
values k(0) = −1 and k(1) = 1 in its two entries, placing the mask in turn at every position j along
row i, multiplying what is under the mask by the mask entries, and adding the result. In pseudo-code,

for j = jstart, . . . , jfinish do
d(i, j)← k(0)f(i, j) + k(1)f(i, j + 1,)

end for

This adds a little generality, because we can change the values of k without changing the code. Since we
are generalizing, we might as well allow for several entries in k. For instance, we might in the future switch
to a central approximation to the derivative,

∂f(x, y)

∂y

∣∣∣∣
x=i,y=j

≈ f(i, j + 1)− f(i, j − 1)

2
.

So now we can define for instance k[−1] = −1/2, k[0] = 0, and k[1] = 1/2 and write a general-purpose
loop in view of possible future changes in our choice of k:

for j = jstart, . . . , jfinish do
d(i, j)← 0
for v = vstart, . . . , vfinish do

d(i, j)← d(i, j) + k(v)f(i, j + v)
end for

end for

This is now much more general: it lets us choose which horizontal neighbors to combine and with what
weights. But clearly we will soon want to also combine pixels above i, j, not only on its sides, and for the
whole picture, not just one row. This is easily done:

2

for i = istart, . . . , ifinish do
for j = jstart, . . . , jfinish do

d(i, j)← 0
for u = ustart, . . . , ufinish do

for v = vstart, . . . , vfinish do
d(i, j)← d(i, j) + k(u, v)f(i+ u, j + v)

end for
end for

end for
end for

where now k(u, v) is a two-dimensional array. The two innermost for loops just keep adding values to
d(i, j),so we can express that piece of code by the following mathematical expression:

d(i, j) =

ufinish∑
u=ustart

vfinish∑
v=vstart

k(u, v)f(i+ u, j + v) . (1)

This is called a correlation. A very closely related operation is convolution:

h(i, j) =

afinish∑
a=astart

bfinish∑
b=bstart

g(a, b)f(i− a, j − b) (2)

where the only difference is in the two minus signs. From a programming point of view, there is little
difference between convolution and correlation:

d(i, j) =

ufinish∑
u=ustart

vfinish∑
v=vstart

k(u, v)f(i+ u, j + v) =

afinish∑
a=astart

bfinish∑
b=bstart

g(a, b)f(i− a, j − b)

where

u = −a , v = −b , astart = −ufinish , afinish = −ustart , bstart = −vfinish , bfinish = −vstart

and
g(a, b) = k(−a,−b) .

The last equality makes convolution less natural to think about than correlation, because of the need to “mir-
ror flip” the straightforward kernel k into g(a, b) when replacing correlation with convolution: to correlate,
first mirror-flip the kernel and then convolve. For instance, to take the derivative in the horizontal direction
we used kernel

k(0) = −1 and k(1) = 1 .

The coefficient k(1) multiplies the pixel value to the right of the current position (i, j), so the index 1 is a
natural choice. If we express finite-difference differentiation with a convolution, we need to use a kernel g
with

g(0) = 1 and g(1) = −1

and it is somewhat awkward that g(1) multiplies the pixel value to the left of the current position (i, j).

3

Mathematically, however, convolution enjoys important properties that would be expressed in a more
complicated way with correlation. This is because convolution looks like the familiar multiplication rule for
polynomials in terms of their coefficients. To see this, consider two polynomials

f(z) = f0 + f1z + . . .+ fmz
m

g(z) = g0 + g1z + . . .+ gnz
n .

Then, the sequence of coefficients of the product

h(z) = h0 + h1z + . . .+ hm+nz
m+n

of these polynomials is the (one-variable) convolution of the sequences of their coefficients:

hi =

afinish∑
a=astart

gafi−a (3)

for appropriate values of astart and afinish. This is because ga multiplies za and fi−a multiplies zi−a, so
the power corresponding to gafi−a is zi for all values of a, and hi as defined by equation (3) is the sum
of all the products with a term zi, as required by the definition of product between two polynomials.1 This
connection with polynomial multiplication makes convolution an even deeper are more pervasive concept
in mathematics than image processing would justify.

Convolving a signal with a given mask g is also called filtering that signal with that mask. When referred
to image filtering, the mask is also called the point-spread function of the filter. If we let

f(i, j) = δij =

{
1 if i = j = 0
0 otherwise

, (4)

then the image f is a single point (the 1) in a sea of zeros. When the convolution (2) is computed, we obtain

h(i, j) = g(i, j) .

In words, the single point at the origin is spread into a blob equal to the mask (interpreted as an image).
The concept of convolution can be extended to continuous functions as well. In analogy with equation

(2), we define the convolution between two continuous functions f(x, y) and g(x, y) as the following double
integral:

h(x, y) =

∫ +∞

−∞

∫ +∞

−∞
g(a, b)f(x− a, y − b) da db .

2 Smoothing

The effects of noise on images can be reduced by smoothing, that is, by replacing every pixel by a weighted
average of its neighbors. This operation can be expressed by the following convolution:

h(i, j) =

afinish∑
a=astart

bfinish∑
b=bstart

g(a, b)f(i− a, j − b) (5)

1Verify this fact with an example.

4

Figure 1: The two dimensional kernel on the left can be obtained by rotating the function γ(r) on the right
around a vertical axis through the maximum of the curve (r = 0).

where g is the convolution mask that lists the weights, f is the image, and astart, afinish, bstart, bfinish delimit
the domain of definition of the kernel, that is, the size of the neighborhood involved in smoothing. The
kernel is usually rotationally symmetric, as there is no reason to privilege, say, the pixels on the left of
position i, j over those on the right2:

−astart = afinish = −bstart = bfinish = n (6)

g(a, b) = γ(r)

where
r =

√
a2 + b2

is the distance from the center of the kernel to its element a, b. Thus, a rotationally symmetric kernel can be
obtained by rotating a one-dimensional function γ(r) defined on the nonnegative reals around the origin of
the plane (figure 1).

2.1 The Gaussian Function

The plot in figure 1 was obtained from the Gaussian function

γ(r) =
1

2πσ2
e−

1
2(rσ)

2

with σ = 6 pixels (one pixel corresponds to one cell of the mesh in figure 1), so that

g(a, b) =
1

2πσ2
e−

1
2
a2+b2

σ2 . (7)

The normalizing factor 1/(2πσ2) makes the integral of the two-dimensional Gaussian equal to one. This
normalization, however, assumes that a, b in g(a, b) are real variables, and that the Gaussian is defined over
the entire plane.

In the following, we first justify the choice of the Gaussian, by far the most popular smoothing function
in computer vision, and then give a better normalization factor for a discrete and truncated version of it.

2This only holds for smoothing. Nonsymmetric filters tuned to particular orientations are very important in vision. Even for
smoothing, some authors have proposed to bias filtering along an edge away from the edge itself. An idea worth pursuing.

5

Figure 2: The pillbox function.

The Gaussian function satisfies an amazing number of mathematical properties, and describes a vast
variety of physical and probabilistic phenomena. Here we only look at properties that are immediately
relevant to computer vision.

The first set of properties is qualitative. The Gaussian is, as noted above, symmetric. It also emphasizes
nearby pixels over more distant ones, a property shared by any nonincreasing function γ(r). This property
reduces smearing (blurring) while still maintaining noise averaging properties. In fact, compare a Gaussian
with a given support to a pillbox function over the same support (figure 2) and having the same volume
under its graph. Both kernels reach equally far around a given pixel when they retrieve values to average
together. However, the pillbox uses all values with equal emphasis. Figure 3 shows the effects of convolving
a step function with either a Gaussian or a pillbox function. The Gaussian produces a curved ramp at the
step location, while the pillbox produces a flat ramp. However, the pillbox ramp is wider than the Gaussian
ramp, thereby producing a sharper image.

Another useful property of the Gaussian function is its smoothness. If g(a, b) is considered as a function
of real variables a, b, it is differentiable infinitely many times. Although this property by itself is not too
useful with discrete images, it implies that in the frequency domain the Gaussian drops as fast as possible
among all functions of a given space-domain support. Thus, it is as low-pass a filter as one can get for a
given spatial support. This holds approximately also for the discrete and truncated version of the Gaussian.
In addition, the Fourier transform of a Gaussian is again a Gaussian, a mathematically convenient fact.
Specifically,

F
[
e−π(x2+y2)

]
= e−π(u2+v2) .

In words, the Gaussian function e−π(x2+y2) is an eigenfunction of the Fourier transformation.3 The Fourier
transform of the normalized and scaled Gaussian g(a, b) defined in equation (7) is

G(u, v) = e−
1
2

(2πσ)2(u2+v2) .

Another important property of g(a, b) is that it never crosses zero, since it is always positive. This is
essential for instance for certain types of edge detectors, for which smoothing cannot be allowed to introduce
its own zero crossings in the image.

The Gaussian function is also a separable function. A function g(a, b) is said to be separable if there are
two functions g1 and g2 of one variable such that

g(a, b) = g1(a)g2(b) .

3A function f is an eigenfunction for a transformation T if Tf = λf for some scalar λ.

6

Figure 3: Intensity graphs (left) and images (right) of a vertical step function (top), and of the same step
function smoothed with a Gaussian (middle), and with a pillbox function (bottom). Gaussian and pillbox
have the same support and the same integral.

7

For the Gaussian, this is a consequence of the fact that

ex+y = exey

which leads to the equality
g(a, b) = g1(a)g1(b)

where
g1(x) =

1√
2πσ

e−
1
2(xσ)

2

(8)

is the one-dimensional Gaussian, whose integral is also 1.
Thus, the Gaussian of equation (7) separates into two equal factors. This is computationally important,

because the convolution (5) can then itself be separated into two one-dimensional convolutions:

h(i, j) =

n∑
a=−n

g1(a)

n∑
b=−n

g1(b)f(i− a, j − b) (9)

(we also used equation (6) for simplicity), with substantial savings in the computation. In fact, the double
summation

h(i, j) =

n∑
a=−n

n∑
b=−n

g(a, b)f(i− a, j − b)

requires m2 multiplications and m2 − 1 additions, where m = 2n + 1 is the number of pixels in one row
or column of the convolution mask g(a, b). The sums in (9), on the other hand, can be rewritten so as to be
computed by 2m multiplications and 2(m− 1) additions as follows:

h(i, j) =

n∑
a=−n

g1(a)φ(i− a, j) (10)

where

φ(i, j) =
n∑

b=−n
g1(b)f(i, j − b) . (11)

Both these expressions are convolutions, with anm×1 and a 1×m kernel, respectively, so they each require
m multiplications and m− 1 additions.

Of course, to actually achieve this gain, convolution must now be performed in the two steps (11) and
(10): first convolve the entire image with g1 in the horizontal direction, then convolve the resulting image
with g1 in the vertical direction (or in the opposite order, since convolution commutes). If we were to perform
(9) literally, there would be no gain, as for each value of i−a, the internal summation is recomputedm times,
since any fixed value d = i− a occurs for pairs (i, a) = (d− n,−n), (d− n+ 1,−n+ 1), . . . , (d+ n, n)
when equation (9) is computed for every pixel (i, j).

Thus, separability decreases the operation to 2m multiplications and 2(m − 1) additions, with an ap-
proximate gain

2m2 − 1

4m− 2
≈ 2m2

4m
=
m

2
.

If for instance m = 21, we need only 42 multiplications instead of 441, with an approximately tenfold
increase in speed.

8

Exercise. Notice the similarity between γ(r) and g1(a). Is this a coincidence?

2.2 Normalization and Truncation

All Gaussian functions in this section were given with normalization factors that make the integral of the
kernel equal to one, either on the plane or on the line. This normalization factor must be taken into account
when actual values output by filters are important. For instance, if we want to smooth an image, initially
stored in a file of bytes, one byte per pixel, and write the result to another file with the same format, the
values in the smoothed image should be in the same range as those of the unsmoothed image. Also, when
we compute image derivatives, it is sometimes important to know the actual value of the derivatives, not just
a scaled version of them.

However, using the normalization values as given above would not lead to the correct results, and this
is for two reasons. First, we do not want the integral of g(a, b) to be normalized, but rather its sum over an
integer grid. Second, our grids are invariably finite, so we want to add up only the values we actually use,
as opposed to every value for a, b between −∞ and +∞.

The solution to this problem is simple. For a smoothing filter we first compute the unscaled version of,
say, the Gaussian in equation (7), and then normalize it by sum of the samples:

g0(a, b) = e−
1
2
a2+b2

σ2 (12)

c =
n∑

a=−n

n∑
b=−n

g0(a, b)

g(a, b) =
1

c
g0(a, b) .

To verify that this yields the desired normalization, consider an image with constant intensity f0. Then its
convolution with the new g(a, b) should yield f0 everywhere as a result. In fact, we have

h(i, j) =
n∑

a=−n

n∑
b=−n

g(a, b)f(i− a, j − b)

= f0

n∑
a=−n

n∑
b=−n

g(a, b)

= f0

as desired. Of course, normalization can be performed on one-dimensional Gaussian functions separably, if
the two-dimensional Gaussian function is written as the product of two one-dimensional Gaussian functions.
The concept is the same:

g10(b) = e−
1
2(bσ)

2

c =

n∑
b=−n

g1(b) (13)

g1(b) =
1

c
g10(b) .

9

1

1

Figure 4: The triangle function interpolates linearly.

3 Image Differentiation

In order to compute derivatives of discrete images, one needs a model for how the underlying continuous4

image behaves between pixel values. For instance, approximating the derivative with a first-order difference

f(i, j + 1)− f(i, j)

implies that the underlying image is piecewise linear, because then the first-order difference is exactly the
derivative of a linear function that goes through f(i, j + 1) and f(i, j).

More generally, if the discrete image is formed by samples of the continuous image, then the latter
interpolates the former. Interpolation can be expressed as a hybrid-domain convolution:

h(x, y) =

n∑
a=−n

n∑
b=−n

f(a, b)p(x− a, y − b)

where x, y are real variables and p(x, y), the interpolation function, must satisfy the constraint

p(a, b) =

{
1 if a = b = 0
0 for all other integers a, b

.

This constraint ensures that
h(i, j) = f(i, j)

on all integer grid points, that is, that p actually interpolates the image points f(i, j). For instance, for linear
interpolation in one dimension, p is the triangle function of figure 4.

Since both interpolation and differentiation are linear, instead of interpolating the image and then differ-
entiating we can interpolate the image with the derivative of the interpolation function. Formally,

hx(x, y) =
∂h

∂x
(x, y) =

∂

∂x

n∑
a=−n

n∑
b=−n

f(a, b)p(x− a, y − b)

=

n∑
a=−n

n∑
b=−n

f(a, b)px(x− a, y − b) .

We then need to sample the result at the grid points i, j to obtain a discrete image. This yields the final,
discrete convolution that computes the derivative of the underlying continuous image h with respect to the

4Continuity here refers to continuity of the domain: a and b are real numbers.

10

vertical variable:

hx(i, j) =

n∑
a=−n

n∑
b=−n

f(a, b)px(i− a, j − b) . (14)

From Shannon’s sampling theorem, we know that the mathematically correct interpolation function to
use would be the sinc function:

p(x, y) = sinc(x, y) =
sinπx

πx

sinπy

πy
.

However, the sinc decays proportionally to 1/x and 1/y, which is a rather slow rate of decay. Consequently,
only values that are far away from the origin can be ignored in the computation. In other words, the sum-
mation limit n in (14) must be large, which is a computationally undesirable state of affairs. In addition, if
there is aliasing5, the sinc function will amplify its effects, as it combines a large number of unrelated pixel
values.

Although the optimal solution to this dilemma is outside the scope of this course, it is clear that a good
interpolation function p must pass only frequencies below a certain value in order to smooth the image and
reduce noise. At the same time, it should also have a small support in the spatial domain. We noted in
the previous section that the Gaussian function fits this bill, since it is compact in both the space and the
frequency domain. We therefore let p0 be the (unnormalized) Gaussian function,

p0(x, y) = g0(x, y)

and p0x, p0y its partial derivatives with respect to x and y (figure 5). We then sample p0x and p0y over the
integers and normalize them by requiring that their response to a ramp yield the slope of the ramp itself. A
unit-slope, discrete ramp in the i direction is represented by

u(i, j) = i

and we want to find a constant c such that

c
n∑

a=−n

n∑
b=−n

u(a, b)p0x(i− a, j − b) = 1 .

for all i, j so that

px(x, y) = c p0x(x, y) and py(x, y) = c p0y(x, y) .

In particular for i = j = 0 we obtain

c = − 1∑n
a=−n

∑n
b=−n bg0x(a, b)

. (15)

Since the partial derivative g0x(a, b) of the Gaussian function with respect to a is negative for positive a,
this constant c is positive. By symmetry, the same constant normalizes g0y.

Of course, since the two-dimensional Gaussian function is separable, so are its two partial derivatives:

hx(i, j) =
n∑

a=−n

n∑
b=−n

f(a, b)gx(i− a, j − b) =
n∑

a=−n
d1(i− a)

n∑
b=−n

f(a, b)g1(j − b)

5Aliasing means that the image is sampled too coarsely to properly represent all its spatial frequencies.

11

Figure 5: The partial derivatives of a Gaussian function with respect to x (left) and y (right) represented by
plots (top) and isocontours (bottom). In the isocontour plots, the x variable points vertically down and the y
variable points horizontally to the right.

12

where
d1(x) =

dg1

dx
= − x

σ2
g1(x)

is the ordinary derivative of the one-dimensional Gaussian function g1(x) defined in (8). A similar expres-
sion holds for hy(i, j) (see below).

Thus, the partial derivative of an image in the x direction is computed by convolving with d1(x) and
g1(y). The partial derivative in the y direction is obtained by convolving with d1(y) and g1(x). In both
cases, the order in which the two one-dimensional convolutions are performed is immaterial:

hx(i, j) =
n∑

a=−n
d1(i− a)

n∑
b=−n

f(a, b)g1(j − b) =
n∑

b=−n
g1(j − b)

n∑
a=−n

f(a, b)d1(i− a)

hy(i, j) =
n∑

a=−n
g1(i− a)

n∑
b=−n

f(a, b)d1(j − b) =
n∑

b=−n
d1(j − b)

n∑
a=−n

f(a, b)g1(i− a) .

Normalization can also be done separately: the one-dimensional Gaussian g1 is normalized according to
(13), and the one-dimensional Gaussian derivative d1(a) is normalized by the one-dimensional equivalent
of (15):

d0(x) = −xe−
1
2(xσ)

2

c =
1∑n

b=−n bd0(b)

d1(x) =
1

c
d0(x) .

13

