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Let I(x) be a gray-level image with n pixels and with values in V = {0, . . . , vmax}
and let P(x) be a pixel predicate. The number of pixels that satisfy the predicate
is denoted by N(P). The histogram of I is the function hI : V → N defined by

hI(u) = N(I(x) = u)

and the cumulative count of I is the function HI : V → N defined by

HI(u) = N(I(x) ≤ u) =
∑
i≤u

hI(i)

so that

hI(u) =

{
HI(u) for u = 0
HI(u)−HI(u− 1) otherwise .

Let the function
f : V → V

be some point transformation of the image:

J(x) = f(I(x)) .

Then, the cumulative count of the transformed image J is

HJ(v) = N(J(x) ≤ v) = N(f(I(x)) ≤ v) .

If f is strictly monotonic and increasing, then it is invertible and

HJ(v) = N(I(x) ≤ f−1(v)) = HI(f
−1(v)) . (1)

Equalizing the histogram of I(x) amounts to applying a point transformation
f to it so that

hJ(v) ≈ c so that HJ(v) ≈ [v + 1]c . (2)
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where
c =

n

|V|
.

Equations (1) and (2) show that histogram equalization requires f to satisfy

HI(f
−1(v)) ≈ [v + 1]c

so that
1

c
HI(f

−1(v))− 1 ≈ v .

This result shows that f−1 is the approximate inverse of the function

g(u) =
1

c
HI(u)− 1 ,

so
f(u) ≈ g(u) =

1

c
HI(u)− 1 . (3)

This derivation assumes that f , and therefore the cumulative count HI of the
input image, is strictly monotonic. If it is not, the definition (3) can still be used,
but the histogram of the resulting image will be farther away from constant.

A simple equalization function (that also optionally returns f ) can thus be
written as follows in MATLAB:

function[J, f] = equalize(I)
vmax = double(intmax(class(I)));
h = hist(I(:), 0:vmax);
H = cumsum(h);
c = numel(I) / (vmax + 1);
f = H/c - 1;
J = cast(f(I), class(I));

Regardless of the nature of HI , exact equalization can generally not be achieved
with a point transformation. The fundamental reason for this is that a point trans-
formation v = f(u) maps every pixel whose value is u to the new value v. In terms
of histograms, this means that the histogram bar hI(u) can only be moved in toto
to a different position by the change of variable hJ(v) = hI(f

−1(v)). Different
bars hI(u1), . . . , hI(uk) can be moved to the same position v, in which case

hJ(v) =
k∑

i=1

hI(uk) .
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The additional requirement that f be monotonic and increasing implies that remapped
values preserve order,

u1 < u2 ⇒ v1 ≤ v2

so the ordering of two bars in hI cannot be reversed in hJ .
Because of this, the bars in the new histogram are the same bars as in the

old histogram, spread out in a different way, and with the possibility of collision
(two or more bars moving to the same bin of hJ and adding up their values as
a result). This is a very strong constraint on what histograms can be obtained
by a point transformation. The example in Figure 1 may help clarify. While the
detailed histogram of the output image is not constant, a histogram with much
wide bins is roughly constant. The gaps in the detailed histogram of the output
image (visible when the plot is displayed with enough magnification) are values
where HJ(v − 1) = HJ(v), so that hJ(v) = HJ(v)−HJ(v − 1) = 0.

3



0 100 200 3000

1

2

3

4

5x 105

0 100 200 3000

1000

2000

3000

4000

5000

0 100 200 3000

100

200

300

0 100 200 3000

1

2

3

4

5x 105

0 100 200 3000

1000

2000

3000

4000

5000

0 100 200 3000

2

4

6x 104

Figure 1: The three plots under the input image at the top are its cumulative count,
histogram, and the equalization function f . The three plots above the equalized
image at the bottom are its cumulative count, histogram, and a histogram with
coarse bins.
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