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Introductory concepts about probability are first explained for outcomes that take values in
discrete sets, and then extended to outcomes on the real line.

1 Discrete Probabilities
Consider a set Ω of the possible individual outcomes of an experiment. In the roll of a die, Ω
could be the set of six possible values. In the roll of three dice, Ω could be the set of 63 = 216
combinations of values. In the sand-hill crane experiment, Ω could be the set of possible population
sizes in year 7, or even the set of all possible sequences y(n) of populations over 20 years, one
sequence forming a single element ω in Ω. The set Ω is called the universe, because it considers
all conceivable outcomes of interest.

The set E of events built on Ω is the set of all possible subsets of elements taken from Ω. For
the roll of a die, the event set E is the following set of 26 = 64 subsets:

E = {∅, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},
{2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6},
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5},
{1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6},
{3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},
{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6},
{2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5},
{1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}

Conceptually, it is important to note that, say, {1, 4} above is really a shorthand for

{“the die has produced value 1”, “the die has produced value 4”} .

The first event, ∅, is the empty set (which is a subset of any set), and the next six events are
called singletons because they comprise a single outcome each. The largest event is Ω itself (last
in the list above). Note that events are not repetitions of outcomes. For instance, the event {1, 4, 6}
does not mean “first 1, then 4, then 6,” but rather “either 1 or 4 or 6.”
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1.1 The Probability Function

A (discrete) probability function is a function P from the event set E to the real numbers
that satisfies the following properties:

P1 : P[E] ≥ 0 for every E ∈ E
P2 : P[Ω] = 1

P3 : E ∩ F = ∅ → P[E ∪ F ] = P[E] + P[F ] for all E,F ∈ E .

A probability function can be viewed as a measure for sets in the event space E , normalized
so that the universe Ω ∈ E has unit measure (property P2).

Property P1 states that measures are nonnegative, and property P3 reflects additivity: if we
measure two separate (disjoint) sets, their sizes add up. For instance, the event E = {2, 4, 6} has
measure 1/2 with the probabilities defined for a die roll. The event E is greater than the event
F = {1, 3}, which has only measure 1/3. Since E and F are disjoint, their union E ∪ F has
measure 1/2 + 1/3 = 5/6.

The event set is large, and the properties above imply that probabilities cannot be assigned
arbitrarily to events. For instance, the empty set must be given probability zero. Since

∅ ∩ E = ∅ for any E ∈ E ,

property P3 requires that
P[∅ ∪ E] = P[∅] + P[E] .

However,
∅ ∪ E = E ,

so
P[E] = P[∅] + P[E] ,

that is,
P[∅] = 0 .

1.2 Independence and Conditional Probability

Two events E, F in E are said to be mutually independent if

P[E ∩ F ] = P[E]P[F ] .

For instance, the events E = {1, 2, 3} and F = {3, 5} in the die roll are mutually independent:

P[E] = 1/2 , P[F ] = 1/3 and P[E ∩ F ] = P[{3}] = 1/6
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so that
P[E ∩ F ] = P[E]P[F ] = 1/6 .

There is little intuition behind this definition of independence. To understand its importance, we
introduce the notion of conditional probability:

Let F be an event of nonzero probability. Then, the conditional probability of an event E
given F is defined as follows:

P[E | F ] =
P[E ∩ F ]

P[F ]
. (1)

Note first that independence of E and F (assuming P[F ] > 0) is equivalent to

P[E | F ] =
P[E ∩ F ]

P[F ]
=

P[E] P[F ]

P[F ]
= P[E] ,

that is,

Any two events E, F in the event set E are mutually independent if

P[E ∩ F ] = P[E]P[F ] .

If P[F ] > 0, the two events E and F are mutually independent if and only if

P[E | F ] = P[E] . (2)

Both the notion of conditional probability and that of independence can be given a useful,
intuitive meaning. Because of normalization (P[Ω] = 1), the probability of an event E is the
fraction of universe Ω covered by E, as measured by P[·] (see the Venn diagram in Figure 1(a)).
From the definition (1) we see that the conditional probability P[E | F ] measures the fraction of
the area of F covered by the intersection E ∩ F (Figure 1 (b)). Thus, conditioning by F redefines
the universe to be F , and excludes from consideration the part of event E (or of any other event)
that is outside the new universe. In other words, P[E | F ] is the probability of the part of event E
that is consistent with F , and re-normalized to the measure of F : Given that we know that F has
occurred, what is the new probability of E?

For example, suppose that we are interested in the probability of the event E = {4, 5, 6} (either
a 4, a 5, or a 6 is produced) in a single roll of a die. The (unconditional) probability of E is 1/2.
We are subsequently told that the last roll has produced an odd number, so event F = {1, 3, 5}
has occurred (we have not seen the roll, so we do not know which odd number has come out). The
conditional probability P[E | F ] measures the probability of E given that we know that event F
has occurred. The two outcomes 4 and 6 in E are now inconsistent with F , and E ∩ F = {5} lists
the only remaining possibility in favor of E. The new universe F collects all possible outcomes in
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Figure 1: (a) The probability of an event E can be visualized as the fraction of the unit area of
universe Ω that is covered by E. (b) The conditional probability of E given F redefines the new
universe as F (both shaded areas), and only considers the area of the part of E in the new universe,
that is, of E ∩ F (darker shading).

light of the newly available information, and the probability of E post facto is

P[E | F ] =
P[E ∩ F ]

P[F ]
=

P[{5}]
P[{1, 3, 5}]

=
1/6

1/2
= 1/3 .

Thus, the fact that F has occurred has shrunk the probability of E from 1/2 to 1/3.
Of course, conditioning can also increase probabilities. For instance, with E = {4, 5, 6} and

F = {2, 4, 6} we have P[E] = 1/2 and P[E | F ] = 2/3 (verify this!).
Equation (2) then shows that for a conditioning event F with nonzero probability, independence

of E and F means that the occurrence of F does not alter the probability of E. Before or after we
know that F has occurred, the probability of E remains the same. In the two examples above, the
events E and F are not independent (we say that they are dependent on each other). Verify that the
events E = {2, 3} and F = {1, 3, 5} are independent.

The following fact is easy to prove (and comforting!):

Conditional probabilities are indeed probabilities, that is, a measure on the original universe
Ω, in that the following three properties hold for any F such that P[F ] > 0:

P[E | F ] ≥ 0 for every E ∈ E
P[Ω | F ] = 1

E ∩ E ′ = ∅ → P[E ∪ E ′ | F ] = P[E | F ] + P[E ′ | F ] for all E,E ′ ∈ E .

Here are the proofs:

P[E | F ] =
P[E ∩ F ]

P[F ]
≥ 0
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(immediate).

P[Ω | F ] =
P[Ω ∩ F ]

P[F ]
=

P[F ]

P[F ]
= 1

because F is a subset of Ω and so Ω ∩ F = F . Finally,

P[E ∪ E ′ | F ] =
P[(E ∪ E ′) ∩ F ]

P[F ]
=

P[(E ∩ F ) ∪ (E ′ ∩ F )]

P[F ]
=

P[E ∩ F ] + P[E ′ ∩ F ]

P[F ]

=
P[E ∩ F ]

P[F ]
+

P[E ′ ∩ F ]

P[F ]
= P[E | F ] + P[E ′ | F ] .

In the second equality above we used De Morgan’s law for the intersection with a union (see Figure
2):

(E ∪ E ′) ∩ F = (E ∩ F ) ∪ (E ′ ∩ F ) (3)

and in the third equality we used (i) the fact that if E and E ′ are disjoint so are the (smaller) sets
E ∩ F and E ′ ∩ F , and (ii) property P3 for probabilities.
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Figure 2: De Morgan’s law (3) for the intersection with a union: The shaded area in (b) can be
obtained in two ways: (i) first take the union (a) of E and E ′ and then intersect with F ; or (ii) first
intersect (c) E with F and (d) E ′ with F , and then take the union of the two.

1.3 Random Variables and Probability Distributions
A discrete random variableX is a way to (i) group outcomes into sets of outcomes to be considered
equivalent for the purpose at hand, and to (ii) number these groups. Specifically:

Any function from the universe Ω of outcomes to (a subset of) the integers

X : Ω→ Z

is a (discrete) random variable.
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Translating outcomes (or rather groups of outcomes) into numbers is a crucial step towards
providing statistical summaries of outcomes in experiments.

While there is no restriction on what function to use as a random variable, only some functions
end up being useful random variables. For instance, a natural random variable to define for the
roll of a die is the function X that assigns to the outcome ω =“the die has produced value x”
the number X(ω) = x for x = 1, 2, 3, 4, 5, 6. The function that assigns the number 10 to every
outcome is a random variable as well, but not a useful one.

The key insight for assigning probabilities to events in a manner that is consistent with the
properties P1, P2, P3 is that every event that can be expressed in terms of a random variable can
be built as a union of the disjoint sets

X−1(x) = {ω : X(ω) = x} for x ∈ X = X(Ω) .

This idea leads to the notion of a probability distribution, which assigns probabilities to distinct
values of a discrete random variable. Formally:

Given a universe Ω and a random variable X on Ω, a (discrete) probability distribution is a
function p from X = X(Ω) to the set of real numbers between 0 and 1 defined by

p(x) = P[X−1(x)] for all x ∈ X ,

that is, the function that assigns probabilities to all events that map to each distinct value x
of the random variable.

Since X is a function, the sets X−1(x) are disjoint subsets and their union covers all of Ω.
Therefore, properties P2 and P3 imply that∑

x∈X

p(x) = 1 .

For instance, the probability distribution for the roll of a fair die is the constant function

p(x) =
1

6
for x = 1, 2, 3, 4, 5, 6 ,

and the probability of the event {1, 4, 6} is p(1) + p(4) + p(6) = 1/6 + 1/6 + 1/6 = 1/2. This
distribution is called the uniform probability distribution over the six possible values of x, and is
sometimes denoted by pU6(x). More generally,

pUn(k) =
1

n
for 1 ≤ k ≤ n (or for 0 ≤ k ≤ n− 1 if more convenient).

The fact that in this example there is a distinct value of the random variable for each outcome is a
coincidence. A different random variable on the universe of die roll outcomes could be defined to
assign a value of zero to each even outcome and a value of one to each odd outcome:

X(′1′) = X(′3′) = X(′5′) = 0 and X(′2′) = X(′4′) = X(′6′) = 1

where, again, ′i′ means “the die has produced value i.” This random variable, for a fair die, has
probability distribution pU2(k) = 1/2 for k = 0, 1.
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1.4 Joint, Independent, and Conditional Distributions
The notions of independence and conditioning we introduced for events can be applied to proba-
bility distributions as well. This requires introducing the concept of a joint distribution.

Let X = X(Ω) and Y = Y (Ω) be the images of the universe Ω through two random
variables X and Y . A joint probability distribution pX,Y (x, y) for X and Y is a probability
distribution defined on X × Y , the cross producta of X and Y .

aThe cross product of two sets X and Y is the set of all pairs (x, y) with x ∈ X and y ∈ Y .

Thus, there is essentially no difference between a probability distribution and a joint proba-
bility distribution, except for some more structure in the domain of the latter. However, the joint
distribution completely determines the distributions of X and Y . This is because∑

y∈Y

pX,Y (x, y) =
∑
y∈Y

P[X = x ∩ Y = y) = P[
⋃
y∈Y

(X = x ∩ Y = y)]

= P[X = x ∩ (
⋃
y∈Y

Y = y)] = P[(X = x) ∩ Ω] = P[X = x] = pX(x) .

The six equalities in this chain are justified by the following: (i) the definition of joint probability;
(ii) the fact that different values of Y yield disjoint events, together with property P3; (iii) De
Morgan’s law; (iv) the fact that the union of all values for Y yields all of Ω; (v) the fact that
X = x is a subset of Ω; and (vi) the definition of pX . Analogous reasoning holds for pY , so we
can summarize as follows:

pX(x) =
∑
y∈Y

pX,Y (x, y) (4)

pY (y) =
∑
x∈X

pX,Y (x, y) . (5)

If we arrange the joint probabilities pX,Y (x, y) into an array with one row for each value of x
and one column for each value of y, then the probabilities pX(x) and pY (y) are the sums in each
row and in each column, respectively. Here is an example of a joint probability of random variable
X with values 1, 2 and random variable Y with values 1, 2, 3:

pX,Y (x, y) 1 2 3 pX(x)
1 0.2 0.1 0.25 0.55
2 0.1 0.15 0.2 0.45

pY (y) 0.3 0.25 0.45 1

. (6)

The values in bold are the joint probabilities pX,Y (x, y). Since the values of pX(x) and pY (y) are
naturally written in the margins of this table, they are called the marginal probability distributions.
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The 1 in the bottom right cell emphasizes the fact that the elements in the table add up to one, and
so does each of the two marginal distributions (check this!).

We say that the random variables X and Y are independent if the events for every pair of
values for X and Y are independent, that is, if

pX,Y (x, y) = pX(x) pY (y) .

It is immediate to verify that the joint probability pX,Y (x, y) in table (6) does not satisfy this
property. For instance, pX,Y (1, 1) = 0.2, but pX(1)pY (1) = 0.55 × 0.3 = 0.165, and one coun-
terexample is enough. This also suggests how to build a joint probability distribution under the
assumption of independence: first specify the marginals, and then multiply them together to obtain
the joint. With the marginals in table (6), we obtain the following joint distribution:

pX,Y (x, y) 1 2 3 pX(x)
1 0.165 0.1375 0.2475 0.55
2 0.135 0.1125 0.2025 0.45

pY (y) 0.3 0.25 0.45 1

. (7)

Suppose that
pY (y) > 0 for all y ∈ Y .

Then, the conditional probability distribution of random variable X given random variable
Y is the following function of x and y:

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
. (8)

Finally, the same reasoning used for the analogous result for events shows the following:

If pY (y) is nonzero for all y, the two random variables X and Y are mutually independent
if and only if

pX|Y (x | y) = pX(x) for all x ∈ X and y ∈ Y .

The classical example of independent random variables is the repeated Bernoulli trial. The
Bernoulli trial is a binary event that has a probability p to occur, and a probability q = 1 − p of
not occurring. The Bernoulli random variable B1 associates the value B1 = 1 to occurrence, and
B1 = 0 to non-occurrence, so the probability distribution for the Bernoulli random variable is

pB1(0) = q and pB1(1) = p . (9)

The subscript 1 refers to the fact that there is a single trial. Suppose now that the Bernoulli trial is
repeated n times (think of determining for each of n sand-hill cranes if they will survive winter or
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not). There are 2n possible combinations of values for the n random variables, each corresponding
to a different vector (x1, . . . , xn) with entries equal to either one or zero:

0 . . . 00

0 . . . 01

0 . . . 10

0 . . . 11
...
1 . . . 11

Each of these vectors could be assigned arbitrary probabilities p(x1, . . . , xn) as long as they are
non-negative and they add up to one. If, on the other hand, the trials are assumed to be independent
and have the same distribution (9), then

pBn(x1, . . . , xn) = pB1(x1) · . . . · pB1(xn)

so a vector (x1, . . . , xn) that has k ones and therefore n − k zeros has probability pkqn−k. For
instance, with n = 3 and p = 0.7 we have q = 1 − 0.7 = 0.3, and the probability distribution for
the trice-repeated Bernoulli trial is

pB3(0, 0, 0) = q3 = 0.027

pB3(0, 0, 1) = pq2 = 0.063

pB3(0, 1, 0) = pq2 = 0.063

pB3(0, 1, 1) = p2q = 0.147

pB3(1, 0, 0) = pq2 = 0.063 (10)
pB3(1, 0, 1) = p2q = 0.147

pB3(1, 1, 0) = p2q = 0.147

pB3(1, 1, 1) = p3 = 0.343 .

Check that these numbers add up to 1, so that this is a valid probability distribution.
Incidentally, this construction in the case n = 2 is analogous to the procedure used to construct

(7): first fill in the marginals, then multiply them to obtain the joint distribution:

pX,Y (x, y) 0 1 pX(x)
0 q2 pq q
1 pq p2 p

pY (y) q p 1

.

For n > 2 this is still doable in principle, but now the table becomes three-dimensional for n =
3, and so forth, so the different format used above for the computation in the general case is
preferable.
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The binomial random variable bn counts the number of occurrences of a 1 in the vector
(x1, . . . , xn) of outcomes in a repeated Bernoulli trial. The number of occurrences is between
zero and n. For instance, in the example above b3 is either 0, 1, 2, or 3.

Since different random variable values correspond to disjoint events, property P3 of probabili-
ties implies that the probability that there are k ones in (x1, . . . , xn) is the sum of the probabilities
pBn(x1, . . . , xn) for all the vectors with k ones. In the example,

pb3(0) = pB3(0, 0, 0) = q3 = 0.027

pb3(1) = pB3(0, 0, 1) + pB3(0, 1, 0) + pB3(1, 0, 0) = 3pq2 = 0.189

pb3(2) = pB3(0, 1, 1) + pB3(1, 0, 1) + pB3(1, 1, 0) = 3p2q = 0.441

pb3(3) = pB3(1, 1, 1) = p3 = 0.343

(again, these add up to one, this time quite obviously).
More generally, since the number of binary vectors (x1, . . . , xn) with k ones is(

n

k

)
=

n!

k! (n− k)!
=
n(n− 1) · . . . · (n− k + 1)

k(k − 1) · . . . · 2
we have the following formula for the probability distribution of a binomial random variable bn
with parameter p:

pbn(k) =

(
n

k

)
pkqn−k for 0 ≤ k ≤ n .

The formula for the expansion of the power of a binomial1 shows immediately that these probabil-
ities add up to one:

n∑
k=0

pbn(k) =
n∑

k=0

(
n

k

)
pkqn−k = (p+ q)n = 1n = 1 .

Figure 3 shows plots of the binomial distribution for different values of the parameters n and p.

1.5 Moments
Often a summary of the distribution of a random variable is more useful than the full distribution
itself. The following are the most widely used summaries:

The mean and the centered moments of a probability distribution p(x) are defined as fol-
lows:

mean : mX =
∑
x∈X

xp(x)

i-th centered moment : µX(i) =
∑
x∈X

(x−mX)ip(x) for i ≥ 2 .

1This is where the name “binomial” random variable comes from.
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Figure 3: Binomial distributions for different values of the parameters n and p.
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Since i is unbounded, there are infinitely many centered moments. It is possible to show that
knowledge of the mean and of all the moments is equivalent to knowledge of the full distribution,
so one can strike a trade-off between conciseness and completeness by providing varying numbers
of moments.

The mean mX of a random variable X is the single number that is closest to all possible
outcomes of X in the following sense. Suppose that you are given a fixed guess g for the outcome
of, say, the roll of a die. You can only guess once, and then you pay a penalty (x− g)2 every time
the outcome is x. This is called a quadratic penalty. Then, setting g = mX = 3.5 minimizes your
overall loss for a very large number of rolls. This is called the quadratic loss. Note that mX is not
the most likely outcome. In fact, an outcome of 3.5 when a die is rolled is not just unlikely, it is
impossible.

The 2-nd centered moment is called the variance of the random variable, and is denoted
with σ2

X :
σ2
X = µX(2) =

∑
x∈X

(x−mX)2p(x)

and its square root,

σX =

√∑
x∈X

(x−mX)2p(x)

is called the standard deviation of X .

In the guessing scenario above, the overall quadratic loss in n rolls is close to nσ2
X if you make

the optimal guess g = mX . This approximation becomes better and better as n tends to infinity.
This is rather obvious: since the probability of x is p(x), the number xwill occur about np(x) times
in n rolls, and result in an overall penalty of np(x)(x−mX)2 to be imputed to the outcomes of x.
Adding up this penalty over the six possible outcomes x yields nσ2

X . Thus, σ2
X gives a measure of

how far overall the mean mX is from all the outcomes in the aggregate sense above. Because of
this, variance and standard deviation are said to measure the spread of a distribution. In summary,

The mean minimizes the quadratic loss, and the variance measures the resulting minimal
loss.

A normalized version of the third centered moment is sometimes used to measure the degree
of asymmetry of a distribution, and is called the skew of the random variable, sometimes denoted
by γX(2):

skew : γX(2) =
µX(3)

σ3
X

=

∑
x∈X (x−mX)3p(x)[∑
x∈X (x−mX)2p(x)

] 3
2

.

Skew is positive if there is more mass on the right of the mean, and negative otherwise. Table 1
lists mean, variance, and skew for the uniform, Bernoulli, and binomial random variable. Note the
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increasing magnitude of the skew for the latter two variables as p moves away from 1/2 (either
way). The uniform distribution is symmetric, and has therefore zero skew. The moments in this
table are fairly straightforward to compute (try this!).

Random variable Distribution mX σ2
X γX(2)

Uniform pUn(k) = 1
n

for 1 ≤ k ≤ n n
2

n2−1
12

0
Bernoulli pB1(0) = q and pB1(1) = p p pq q−p√

pq

Binomial pbn(k) =
(
n
k

)
pkqn−k for 0 ≤ k ≤ n np npq q−p√

npq

Table 1: Distribution, mean, variance, and skew for three random variables with parameters n and
p (as applicable), and with p+ q = 1.

Note that Table (1) lists only the moments for the single-trial Bernoulli distribution pB1 . While
in principle the moments can be computed for the general distribution pBn wit n repetitions, these
moments have little significance. For instance, the distribution for pB3 was given in (10). To
compute, say, the mean, one would have to define a scalar random variable that assigns a single
number to each of the eight outcomes (0, 0, 0), . . . , (1, 1, 1). This number is not likely to represent
a quantity of interest, so the mean would be meaningless.

It is not a coincidence that the mean and variance of the binomial distribution on n points are
n times those for the single-trial Bernoulli variable. The binomial random variable is merely the
sum of n independent Bernoulli variables. The mean is a linear operation, so the mean of the sum
is in any case the sum of the means. For two variables:

mX+Y =
∑
x∈X

∑
y∈Y

(x+ y)pX,Y (x, y)

=
∑
x∈X

∑
y∈Y

xpX,Y (x, y) +
∑
x∈X

∑
y∈Y

ypX,Y (x, y)

=
∑
x∈X

x
∑
y∈Y

pX,Y (x, y) +
∑
y∈Y

y
∑
y∈Y

pX,Y (x, y)

=
∑
x∈X

x pX(x) +
∑
y∈Y

y pY (y)

= mX +mY .

The equality in the next-to-last line uses the fact that summing a joint distribution of two variables
over one of the variables yields the marginal distribution of the other (equations (4) and (5)).

The variance is nonlinear, so additivity usually does not hold. It does hold, however, for inde-
pendent random variables, that is, when the joint distribution pX1,...,Xn(x1, . . . , xn) can be factored
into the product pX1(x1) . . . pXn(xn) of the marginal distributions. The proof of this result for two
variables is long but straightforward:
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σ2
X+Y =

∑
x∈X

∑
y∈Y

(x+ y −mX+Y )2pX,Y (x, y)

=
∑
x∈X

∑
y∈Y

(x+ y −mX −mY )2pX,Y (x, y)

=
∑
x∈X

∑
y∈Y

((x−mX) + (y −mY ))2pX,Y (x, y)

=
∑
x∈X

∑
y∈Y

(x−mX)2pX(x)pY (y) +
∑
x∈X

∑
y∈Y

(y −mY )2pX(x)pY (y)

+
∑
x∈X

∑
y∈Y

2(x−mX)(y −mY )pX(x)pY (y)

=
∑
x∈X

(x−mX)2pX(x)
∑
y∈Y

pY (y) +
∑
y∈Y

(y −mY )2pY (y)
∑
x∈X

pX(x)

+ 2
∑
x∈X

(x−mX)pX(x)
∑
y∈Y

(y −mY )pY (y)

=
∑
x∈X

(x−mX)2pX(x) +
∑
y∈Y

(y −mY )2pY (y)

+ 2

(∑
x∈X

xpX(x)−mX

∑
x∈X

pX(x)

) (∑
y∈Y

ypY (y)−mY

∑
y∈Y

pY (y)

)
= σ2

X + σ2
Y + 2(mX −mX · 1) (mY −mY · 1)

= σ2
X + σ2

Y .

For more variables, just repeat these arguments (or, as mathematicians would say, use induc-
tion). In summary,

For any random variables X1, . . . , Xn,

mX1+...+Xn = mX1 + . . .+mXn .

For independent random variables X1, . . . , Xn,

σ2
X1+...+Xn

= σ2
X1

+ . . .+ σ2
Xn

.



15

2 Continuous Probabilities

For continuous probabilities, the universe Ω is an uncountable set, and the probability of any
singleton {ω} with ω ∈ Ω is typically (but not necessarily) zero. For instance, the voltage across
a resistor is (classically) a real number, affected by factors that are difficult to determine, and is
conveniently described by a random variable. Suppose that you are asked to guess the value of the
voltage to be recorded in the next measurement exactly, that is, to infinitely many decimal digits.
The probability that you get the value exactly right is zero. Instead, you may be able to guess the
measurement within some interval with nonzero probability.

Instead of assigning probabilities to singletons, in the continuous case they are assigned to
subsets of Ω. More specifically, the event set E is a so-called Borel σ-algebra, that is, an infinite
sequence of subsets of Ω, with the property that it also contains the empty set, all countable unions
of elements of E , and their complements. So if E,F ∈ E , then E ∪ F , and E (the complement of
E) must also be in E for this to be a Borel σ-algebra. From De Morgan’s laws, it follows that E
also contains all countable intersections of its members.

In the most typical case, Ω is the real line (scalar outcomes), or the cross product of d real lines
(vectors). For the real line, the event set E is constructed to be the smallest Borel σ-algebra that
includes all half-lines x ≤ x0, where x0 is any real number. This event set contains all open and
closed intervals, all points, and all sets of interest in applications (although there are sets of real
numbers that are not in E). For instance, intervals open on the left and closed on the right can be
obtained from half lines as follows:

(a, b] = {x ≤ b} ∩ {x ≤ a}

and point {a} with a ∈ R is then the following countable intersection of left-open intervals:

{a} =
∞⋂
n=0

(
a− 1

n
, a

]
.

Once points are obtained with this construction, they can be used in simple set operations to close
open intervals or open closed intervals on either side.

Similar σ-algebras can be constructed for intervals of the real line or for half-lines for outcomes
that are bounded from above and below (say, the unit interval [0, 1]), or only from below. When
the universe Ω is a cross product of scalar sets, the σ-algebra E is constructed by cross products of
the corresponding scalar σ-algebras.

2.1 Random Variables and Probability Distributions

The concept of random variable is similar to the one introduced for discrete universes:
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Any function from the universe Ω of outcomes to (a subset of) the reals

X : Ω→ R

is a continuous random variable.

However, in continuous universes singletons usually have zero probability, as mentioned ear-
lier, so it is no longer generally feasible to assign probabilities to the event space E by just giving
probabilities to singletons. Instead, a systematic way to endow E with probabilities is to define a
random variable X on Ω, and then associate probabilities to the right-closed half-lines X ≤ x:

PX(x) = P[{ω | X(ω) ≤ x}] .

This function of x ∈ R is called the cumulative probability distribution of the random
variable X .

Since all sets of interest in X(ω) can be formed through countably many set operations on the
right-closed half-lines, as shown earlier, the cumulative probability distribution is a sufficiently
fine and consistent assignment of probabilities on the event set E .

The right-closed half-lines {ω | X(ω) ≤ x} grow with x, that is,

x < x′ implies that {ω | X(ω) ≤ x} ⊂ {ω | X(ω) ≤ x′} ,

so the cumulative distribution PX(x) is monotonic nondecreasing (from the additive property), and

lim
x→−∞

PX(x) = 0 and lim
x→∞

PX(x) = 1 (11)

because
lim

x→−∞
{ω | X(ω) ≤ x} = ∅ and lim

x→∞
{ω | X(ω) ≤ x} = Ω .

The derivative
pX(x) =

dPX

dx
(x) (12)

of the cumulative probability distribution is called the probability density or (somewhat
confusingly) the probability distribution of the random variable X .

Since PX is monotonic nondecreasing, its derivative is nonnegative. Integrating the definition
(12) of density yields∫ b

a

pX(x) dx = PX(b)− PX(a) = P[{ω | a < X(ω) ≤ b}] . (13)
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From this and the limits (11) we also obtain the requirement that the density of a random variable
X integrate to one over the range of X:∫

X(Ω)

pX(x) dx = 1 . (14)

If dx is an infinitesimally small interval of the real line, so that pX(x) can be considered to be
constant over it, the expression (13) with a = x and b = x+ dx yields the following interpretation
of the density function:

pX(x)dx = P[{ω | x < X(ω) ≤ x+ dx}] .

So the density function pX at x times the width dx of a small interval equals the probability
that the random variable X is in the (left-open, right-closed) interval (x, x+ dx].

The density pX(x) itself is not a probability, but rather a probability per unit interval. If x is a
physical quantity with dimensions [x] (for instance, volts), then pX(x) has dimensions [x]−1.

2.2 Hybrid Probabilities
While pX(x) ≥ 0, the density is not bounded from above. In particular, consider a cumulative
distribution function that has a discontinuity at a, that is,2

PX(a+) > PX(a) where PX(a+) = lim
x→a+

P (x) .

This means that
P[ω | X(ω) ≤ a] > P[ω | X(ω) < a]

and so the singleton event X−1({a}) has nonzero probability πa = PX(a)−PX(a−1). The deriva-
tive at a discontinuity is undefined in the ordinary sense. However, it is well-defined in the sense
of generalized functions, and is equal to a Dirac delta πaδ(x− a) of magnitude πa at a.

So one could treat discrete and continuous random variables in a unified way. Fully continuous
random variables have continuous cumulative distribution functions and ordinary density func-
tions. Fully discrete random variables have piecewise constant cumulative distributions with dis-
continuities at X(ω) for every ω ∈ Ω with nonzero probability, and density functions concentrated
as discrete Dirac deltas at the same locations. Hybrid random variables, with both continuous and
discrete events with nonzero probability, have piecewise continuous cumulative distributions and
densities with a continuous component and a sequence of Dirac deltas. The cumulative function
is continuous from the left everywhere, and continuous from the right everywhere except where
discrete probabilities are placed. Figure 4 shows examples.

Hybrid random variables are not uncommon. They arise for instance whenever there is some
clipping function (e.g., max or min) applied to a continuous quantity. As an example, consider a

2In this expression, x→ a+ means that x tends to a from the right.
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Figure 4: Probability density function (top) and cumulative distribution function (bottom) for a
discrete random variable (left), a continuous random variable (middle) and a mixture of the two
(right). A Dirac delta of the form πδ(x − a) is displayed as a vertical bar of height π placed at
x = a. Dots on the cumulative functions emphasize continuity from the left. Note that values of
the density functions are generally not bounded from above, while cumulative functions are always
monotonic and between 0 and 1. The discontinuity gaps in the cumulative functions are equal in
magnitude to the amplitudes of the corresponding Dirac deltas in the densities.
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Figure 5: Probability density function (middle) and cumulative distribution function (right) for the
current in the circuit on the left. The density has a Dirac delta of amplitude 1/3 at the origin, and
the distribution has a corresponding jump.

random current V with a uniform distribution between −4 and 8 volt (Figure 5). If this voltage is
applied to the series of a resistor with resistance R = 2 ohm and an ideal diode, which lets only
positive currents through, the resulting current is

I = max(0, V/R) =

{
V/2 if V ≥ 0
0 otherwise .

Because of the uniform distribution of V , the probability that V < 0 is 1/3. So the current I
is equal to zero with probability 1/3 and uniformly distributed with density 1/6 between 0 and
Vmax/2 = 4. The value 1/6 is found from the unit-mass requirement (14) for the density function.

3 Conditional Probability Distributions

The conditional probability of event E given event F was defined earlier as

P[E|F ] =
P[E ∩ F ]

P[F ]
.

This definition is easily extended to the definition of conditional distribution for discrete random
variables:

p(w|x) = P[W = w | X = x] =
P[W = w ∩X = x]

P[X = x]
=
p(w, x)

p(x)
.

The extension of conditioning to the joint distribution of a continuous random variable W and
a discrete random variable X is only slightly more laborious. We first extend the definition to
cumulative distributions:

P (w|x) = P[W ≤ w | X = x] =
P[W ≤ w ∩X = x]

P[X = x]
=
P (w, x)

p(x)
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and then differentiate with respect to w:

p(w|x) =
d

dw

P (w, x)

p(x)
=
p(w, x)

p(x)
.

Thus, we see that the concept of conditional distribution can be applied to two joint random vari-
ables where the conditioning variable is discrete, and the formula for the two cases is the same:
divide the joint distribution by the marginal distribution of the conditioning variable.

The extension of the notion of conditioning to joint distributions where the conditioning ran-
dom variable X is continuous would seem at first hopeless, since the probability that X = x is
typically zero. However, the same definition can be obtained by a limiting process. Suppose first
that W is discrete. Rather than setting X to a value x, we compute the conditional probability

P[W = w | x < X ≤ x+ a]

for positive a and then compute the limit of this expression as a→ 0 to obtain

p(w|x) = lim
a→0

P[W = w | x < X ≤ x+ a] .

We have

P[W = w | x < X ≤ x+ a] =
P[W = w ∩ x < X ≤ x+ a]

P[x < X ≤ x+ a]
=

∫ x+a

x
p(w, x′) dx′∫ x+a

x
p(x′) dx′

.

As a→ 0, the two integrands tend to p(w, x) and p(x) respectively, and are constant to first order
in a. Because of this, they can be taken out of the integrals. Since∫ x+a

x

dx′ = a ,

we can write

p(w|x) = lim
a→0

P[W = w | x < X ≤ x+ a] = lim
a→0

p(w, x) a

p(x) a
= lim

a→0

p(w, x)

p(x)
=
p(w, x)

p(x)

so the usual formula for conditional distribution applies once again.
The same reasoning applies to the case in which both W and X are continuous, except that we

first derive the result for events of the form W ≤ w, and then differentiate with respect to w:

P[W ≤ w | x < X ≤ x+ a] =
P[W ≤ w ∩ x < X ≤ x+ a]

P[x < X ≤ x+ a]
=

∫ w

−∞

∫ x+a

x
p(w′, x′) dx′ dw′∫ x+a

x
p(x′) dx′

.

Taking the limit for a→ 0 yields

lim
a→0

P[W ≤ w | x < X ≤ x+ a] =
a
∫ w

−∞ p(w
′, x) dw′

ap(x)
=

∫ w

−∞ p(w
′, x) dw′

p(x)
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and differentiating with respect to w yields, no longer surprisingly, the same formula for the con-
ditional probability distribution:

p(w|x) =
d

dx
lim
a→0

P[W ≤ w | x < X ≤ x+ a] =
d

dx

∫ w

−∞ p(w
′, x) dw′

p(x)
=
p(w, x)

p(x)
.

We can therefore conclude with the following general statement, without regard to whether the
two random variables are continuous, discrete, or in combination.

Given two random variables W and X , if the marginal distribution p(x) is nonzero at x,
the conditional probability distribution of W given that X = x is

p(w|x) =
p(w, x)

p(x)
.

The same generality extends immediately to Bayes’s theorem:

Given two random variables W and X , if the marginal distribution p(x) is nonzero at x,
the conditional probability distribution of W given that X = x can be obtained from the
conditional probability distribution of X given that W = w and the marginal distribution
of p(w) by the following formula due to Bayes:

p(w|x) =
p(x|w)p(w)

p(x)
.

Regardless of whether x is continuous or discrete, its marginal distribution can be computed
as follows if W is discrete:

p(x) =
∑
w

p(x|w)p(w) (15)

and as follows if W is continuous:

p(x) =

∫ ∞
−∞

p(x|w)p(w) dw . (16)

Even greater unification can be achieved by noting that the summation (15) reduces to the inte-
gral (16) if the probability distribution p(w) of a discrete random variable W with probabilities
π1, . . . , πn at values w1, . . . , wn is written as a train of Dirac deltas

p(w) =
n∑

k=1

πkδ(w − wk)

as explained in the previous section and illustrated in Figure 4.


