
CPS 570: Artificial Intelligence
First-Order Logic

Instructor: Vincent Conitzer



Limitations of propositional logic
• So far we studied propositional logic
• Some English statements are hard to model inSome English statements are hard to model in 

propositional logic:
• “If your roommate is wet because of rain, your 

roommate must not be carrying any umbrella”y g y
• Pathetic attempt at modeling this:
• RoommateWetBecauseOfRain => 

(NOT(RoommateCarryingUmbrella0) AND ( ( y g )
NOT(RoommateCarryingUmbrella1) AND 
NOT(RoommateCarryingUmbrella2) AND )NOT(RoommateCarryingUmbrella2) AND …)



Problems with propositional logic
• No notion of objects

N ti f l ti bj t• No notion of relations among objects
• RoommateCarryingUmbrella0 is instructive to us,RoommateCarryingUmbrella0 is instructive to us, 

suggesting 
th i bj t ll R t– there is an object we call Roommate,

– there is an object we call Umbrella0,

– there is a relationship Carrying between these two objects

• Formally none of this meaning is thereFormally, none of this meaning is there
– Might as well have replaced RoommateCarryingUmbrella0  

by Pby P



Elements of first-order logic
• Objects: can give these names such as Umbrella0, 

Person0 John EarthPerson0, John, Earth, …
• Relations: Carrying(., .), IsAnUmbrella(.)

– Carrying(Person0, Umbrella0), 
IsUmbrella(Umbrella0)IsUmbrella(Umbrella0)

– Relations with one object = unary relations = 
properties

• Functions: Roommate( )• Functions: Roommate(.)
– Roommate(Person0)

• Equality: Roommate(Person0) = Person1



Things to note about functions
• It could be that we have a separate name for 

Roommate(Person0)

• E g Roommate(Person0) = Person1• E.g., Roommate(Person0) = Person1

• … but we do not need to have such a name… but we do not need to have such a name

• A function can be applied to any object

• E.g., Roommate(Umbrella0)



Reasoning about many objects at once

• Variables: x, y, z, … can refer to multiple objects

• New operators “for all” and “there exists”
– Universal quantifier and existential quantifierUniversal quantifier and existential quantifier

• for all x: CompletelyWhite(x) => 
NOT(PartiallyBlack(x))
– Completely white objects are never partially blackCompletely white objects are never partially black

• there exists x: PartiallyWhite(x) AND 
PartiallyBlack(x)
– There exists some object in the world that is partially white e e e s s so e objec e o d a s pa a y e

and partially black



Practice converting English to 
fi t d l ifirst-order logic

• “John has an umbrella”John has an umbrella

• there exists y: (Has(John, y) AND IsUmbrella(y))

• “Anything that has an umbrella is not wet”

• for all x: ((there exists y: (Has(x, y) AND 
IsUmbrella(y))) => NOT(IsWet(x)))(y))) ( ( )))

• “Any person who has an umbrella is not wet”

• for all x: (IsPerson(x) => ((there exists y: (Has(x, y) 
AND IsUmbrella(y))) => NOT(IsWet(x))))AND IsUmbrella(y)))  NOT(IsWet(x))))



More practice converting 
E li h t fi t d l iEnglish to first-order logic

• “John has at least two umbrellas”John has at least two umbrellas

• there exists x: (there exists y: (Has(John, x) AND 
IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) 
AND NOT(x=y))AND NOT(x y))

• “John has at most two umbrellas”

• for all x, y, z: ((Has(John, x) AND IsUmbrella(x) 
AND Has(John y) AND IsUmbrella(y) ANDAND Has(John, y) AND IsUmbrella(y) AND 
Has(John, z) AND IsUmbrella(z)) => (x=y OR x=z 
OR y=z))



Even more practice converting 
English to first-order logic…

• “Duke’s basketball team defeats any other 
basketball team”basketball team

• for all x: ((IsBasketballTeam(x) AND 
NOT(x=BasketballTeamOf(Duke))) => 
D f t (B k tb llT Of(D k ) ))Defeats(BasketballTeamOf(Duke), x))

• “Every team defeats some other team”• Every team defeats some other team

• for all x: (IsTeam(x) => (there exists y: ( ( ) ( y
(IsTeam(y) AND NOT(x=y) AND Defeats(x,y))))



Is this a tautology?gy
• “Property P implies property Q, or property QProperty P implies property Q, or property Q 

implies property P (or both)”

• for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

• (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) 
=> P(x)))=> P(x)))



Relationship between universal 
and existential

• for all x: a

• is equivalent to

• NOT(there exists x: NOT(a))



Something we cannot do in 
first-order logic

• We are not allowed to reason in general about relations and• We are not allowed to reason in general about relations and 
functions

• The following would correspond to higher-order logic (which is more g p g g (
powerful):

• “If John is Jack’s roommate, then any property of John is also a 
property of Jack’s roommate”

• (John=Roommate(Jack)) => for all p: (p(John) => 
p(Roommate(Jack)))p(Roommate(Jack)))

• “If a property is inherited by children, then for any thing, if that 
property is true of it it must also be true for any child of it”property is true of it, it must also be true for any child of it

• for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) 
AND p(y)) => p(x))))p(y)) p( ))))



Axioms and theoremsAxioms and theorems

• Axioms: basic facts about the domain, our 
“i iti l” k l d b“initial” knowledge base

• Theorems: statements that are logically• Theorems: statements that are logically 
derived from axioms



SUBST

• SUBST replaces one or more variables with 
something else

• For example:For example: 
– SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) 

gives usgives us

– IsHealthy(John) => NOT(HasACold(John))



Instantiating quantifiers
From• From

• for all x: a
• we can obtain
• SUBST({x/g}, a)({ g}, )

• From• From
• there exists x: a
• we can obtain
• SUBST({x/k}, a)
• where k is a constant that does not appear elsewhere in 

the knowledge base (Skolem constant)g ( )
• Don’t need original sentence anymore



Instantiating existentials 
after universals

• for all x: there exists y: IsParentOf(y,x)

• WRONG: for all x: IsParentOf(k x)• WRONG: for all x: IsParentOf(k, x)

• RIGHT: for all x: IsParentOf(k(x), x)( ( ) )

• Introduces a new function (Skolem function)

• … again, assuming k has not been used 
previouslypreviously



Generalized modus ponens
• for all x: Loves(John, x)

– John loves every thing

• for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))
– Jane feels appreciated by every thing that loves herJa e ee s app ec ated by e e y t g t at o es e

• Can infer from this:

F l A i t dB (J J h )• FeelsAppreciatedBy(Jane, John)

• Here, we used the substitution {x/Jane, y/John}
– Note we used different variables for the different sentences– Note we used different variables for the different sentences

• General UNIFY algorithms for finding a good substitution



Keeping things as general as 
possible in unification

• Consider EdibleByWithConsider EdibleByWith 
– e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon

• for all x: for all y: EdibleByWith(Bread, x, y)y y ( , , y)
– Anything can eat bread with anything

• for all u: for all v: (EdibleByWith(u, v, Spoon) => ( y ( , , p )
CanBeServedInBowlTo(u,v))
– Anything that is edible with a spoon by something can be served in a bowl 

to that something

• Substitution: {x/z, y/Spoon, u/Bread, v/z}
• Gives: for all z: CanBeServedInBowlTo(Bread, z)
• Alternative substitution {x/John, y/Spoon, u/Bread, v/John} 

would only have given CanBeServedInBowlTo(Bread, John), 
which is not as general



Resolution for first-order logic
• for all x: (NOT(Knows(John x)) OR IsMean(x) ORfor all x: (NOT(Knows(John, x)) OR IsMean(x) OR 

Loves(John, x))
John loves everything he knows with the possible exception of– John loves everything he knows, with the possible exception of 
mean things

f ll (L (J ) OR K ( J ))• for all y: (Loves(Jane, y) OR Knows(y, Jane))
– Jane loves everything that does not know her

• What can we unify?  What can we conclude?

• Use the substitution: {x/Jane y/John}Use the substitution: {x/Jane, y/John}

• Get: IsMean(Jane) OR Loves(John, Jane) OR 
L (J J h )Loves(Jane, John)

• Complete (i.e., if not satisfiable, will find a proof of this), if
we can remove literals that are duplicates after unification
– Also need to put everything in canonical form first



Notes on inference in first-order logic
• Deciding whether a sentence is entailed is 

id id bl th l ith th t illsemidecidable: there are algorithms that will 
eventually produce a proof of any entailed y p p y
sentence

• It is not decidable: we cannot always conclude 
that a sentence is not entailed



(Extremely informal statement of) 
Gödel’s Incompleteness Theorem

• First-order logic is not rich enough to model basic 
arithmetic

• For any consistent system of axioms that is rich 
enough to capture basic arithmetic (in particular, 
mathematical induction), there exist truemathematical induction), there exist true 
sentences that cannot be proved from those 

iaxioms



A more challenging exercise
• Suppose:

– There are exactly 3 objects in the world,

– If x is the spouse of y, then y is the spouse of x (spouse is 
a function, i.e., everything has a spouse)

• Prove:• Prove:
– Something is its own spouse



More challenging exercise
th i t (NOT( ) AND NOT( ) AND• there exist x, y, z: (NOT(x=y) AND NOT(x=z) AND 
NOT (y=z))

• for all w, x, y, z: (w=x OR w=y OR w=z OR x=y OR 
OR )x=z OR y=z)

• for all x, y: ((Spouse(x)=y) => (Spouse(y)=x))for all x, y: ((Spouse(x) y)  (Spouse(y) x))

• for all x, y: ((Spouse(x)=y) => NOT(x=y)) (for the 
sake of contradiction)

• Try to do this on the board• Try to do this on the board…



Umbrellas in first-order logic
Y k th f ll i thi• You know the following things:
– You have exactly one other person living in your house, who is 

twet
– If a person is wet, it is because of the rain, the sprinklers, or both

If i t b f th i kl th i kl t b– If a person is wet because of the sprinklers, the sprinklers must be 
on

– If a person is wet because of rain that person must not be– If a person is wet because of rain, that person must not be 
carrying any umbrella

– There is an umbrella that “lives in” your house, which is not in its y ,
house

– An umbrella that is not in its house must be carried by some 
person who lives in that house

– You are not carrying any umbrella

• Can you conclude that the sprinklers are on?



Theorem prover on the web
• http://www.spass-prover.org/webspass/index.html (use -DocProof option)

• begin_problem(TinyProblem).

• list_of_descriptions.

• name({*TinyProblem*})name({ TinyProblem }).

• author({*CPS570*}).

• status(unknown).

• description({*Just a test*}).

• end_of_list.

• list_of_symbols.

• predicates[(F,1),(G,1)].

• end_of_list.

• list of formulae(axioms)• list_of_formulae(axioms).

• formula(exists([U],F(U))).

• formula(forall([V],implies(F(V),G(V)))).

• end_of_list.

• list_of_formulae(conjectures).

• formula(exists([W],G(W))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(ThreeSpouses).

• list_of_descriptions.

• name({*ThreeSpouses*}).

• author({*CPS570*}).

• status(unknown).

• description({*Three Spouses*}).

• end of list• end_of_list.

• list_of_symbols.

• functions[spouse].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z)))))))).( ([ ] ([ ] ([ ] ( ( q ( )) ( ( q ( )) ( q ( ))))))))

• formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(
X,Y),or(equal(X,Z),equal(Y,Z))))))))))).

• formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).( ([ ], ([ ], p ( q ( p ( ), ), q ( p ( ), )))))

• end_of_list.

• list_of_formulae(conjectures).

f l ( i t ([X] l( (X) X)))• formula(exists([X],equal(spouse(X),X))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(TwoOrThreeSpouses).

• list_of_descriptions.

• name({*TwoOrThreeSpouses*}).

• author({*CPS570*}).

• status(unknown).

• description({*TwoOrThreeSpouses*}).

• end of list• end_of_list.

• list_of_symbols.

• functions[spouse].

• end_of_list.

• list_of_formulae(axioms).

• formula(exists([X],exists([Y],not(equal(X,Y))))).( ([ ] ([ ] ( q ( )))))

• formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(
X,Y),or(equal(X,Z),equal(Y,Z))))))))))).

• formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).( ([ ], ([ ], p ( q ( p ( ), ), q ( p ( ), )))))

• end_of_list.

• list_of_formulae(conjectures).

f l ( i t ([X] l( (X) X)))• formula(exists([X],equal(spouse(X),X))).

• end_of_list.

• end_problem.



Theorem prover on the web…
• begin_problem(Umbrellas).

• list_of_descriptions.

• name({*Umbrellas*}).

• author({*CPS570*}).

t t ( k )• status(unknown).

• description({*Umbrellas*}).

• end_of_list.

• list_of_symbols.

• functions[(House,1),(You,0)].

• predicates[(Person,1),(Wet,1),(WetDueToR,1),(WetDueToS,1),(SprinklersOn,0),(Umbrella,1),(Carrying,2),(NotAtHome,1)].

• end_of_list.

• list of formulae(axioms)• list_of_formulae(axioms).

• formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(
You))))))),equal(X,Y))))).

• formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))).

• formula(forall([X] implies(and(Person(X) Wet(X)) or(WetDueToR(X) WetDueToS(X)))))• formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X))))).

• formula(forall([X],implies(and(Person(X),WetDueToS(X)),SprinklersOn))).

• formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y))))))).

• formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X))))).

• formula(forall([X],implies(and(Umbrella(X),NotAtHome(X)),exists([Y],and(Person(Y),and(equal(House(X),House(Y)),Carrying(Y,X))))))).

• formula(forall([X],implies(Umbrella(X),not(Carrying(You,X))))).

• end_of_list.

• list of formulae(conjectures)list_of_formulae(conjectures).

• formula(SprinklersOn).

• end_of_list.

• end_problem.



Applications
• Some serious novel mathematical results proved

• Verification of hardware and software
– Prove outputs satisfy required properties for all inputsProve outputs satisfy required properties for all inputs

• Synthesis of hardware and software
– Try to prove that there exists a program satisfying such 

and such properties, in a constructive wayand such properties, in a constructive way

• Also: contributions to planning (up next)


