
Compsci 101.2, Fall 2015 4.1

PFTT (plan for this Thursday)

●  What is a Python program?
Ø  In the context of what we do in Compsci 101
Ø  In a neuroscience lab, at a web start-up, …
Ø  What does "what is a program" even mean?

●  High-level and low-level Python constructs
Ø  Variables and constants:

• Names, types, and values

Ø  Operators and functions on Python types

●  Different approaches to code in Compsci101

Compsci 101.2, Fall 2015 4.2

Start with Code Detective/Analysis

●  Use your skill, intuition, and deductive
reasoning experience to answer questions
about code that may be unfamiliar

http://bit.ly/101fall15-0903-1

Compsci 101.2, Fall 2015 4.3

Results of Code Analysis

●  For details on plurals: http://bit.ly/1N49u6b

●  How did we call pluralize many times?
Ø  Loop. What is an alternative?

●  What does the 'if' statement do?
Ø  Selects a code block to execute (more next week)

●  If you have a question? Write and run code!

Compsci 101.2, Fall 2015 4.4

Organization matters
●  https://www.youtube.com/watch?v=1ve57l3c19g

Compsci 101.2, Fall 2015 4.5

APT organization, Code organization

●  You’ve written the BMI.py APT
Ø  Where is that module? How do you test it?
Ø  PyDev console, but then must import it
Ø  Adding print statements in BMI.py to test

●  Putting sentences together in order…
Ø  “Once upon a time…” “It was the best of

times…” “Aujord’hui ma maman est morte”

●  Putting code together in order
Ø  Takes judgment and experience

Compsci 101.2, Fall 2015 4.6

Writing Functions, Calling Functions

●  After writing BMI.py, testing it (snarf)
Ø  http://www.sutterhealth.org/health/bmi_calculator.html

import BMI

def getAdvice(name):
 print "hello",name,"how tall are you (in inches)?",
 inches = input()
 print "how much do you weigh (in pounds)",
 pounds = input()
 bmi = BMI.calculate(pounds,inches)

 if (bmi < 18.5):
 return "underweight"
 if (bmi < 24.9):
 return "healthy"
 if (bmi < 29.9):
 return "overweight"
 return "obese"

Compsci 101.2, Fall 2015 4.7

Examining Functions Closely

●  Names of parameters in BMI.calculate?
Ø  What about order of parameters?

●  Names of values passed to BMI.calculate?
Ø  Could be variables, constants: arguments

●  Who wrote math.sqrt(x)?
Ø  What is name of parameter? Essential to call?
Ø  What is type of parameter? Essential to call?

Compsci 101.2, Fall 2015 4.8

Writing Code and Deploying Code

●  You’ve written code to solve an APT
Ø  Written a .py module, how do you run it?
Ø  Use a Python interpreter, must call function

●  The APT testing framework calls your code
Ø  Hollywood principle

•  “Don’t call us, we’ll call you”
• https://en.wikipedia.org/wiki/Hollywood_principle

Ø  Like developing and using an API, someone
writes the code, someone calls the code
• urllib2.urlopen(http://nytimes.com)

Compsci 101.2, Fall 2015 4.9

Return to the Barnyard and Farm

●  Back to an example from last time
Ø  Organizing code in a program
Ø  Refactoring code in a working program

●  Once a program works, sometimes you're
not done!
Ø  What does "it works" even mean?
Ø  What about version 2.0?
Ø  What about making it "better": perfect is the

enemy of good. Good enough works!!!!

Compsci 101.2, Fall 2015 4.10

Toward creating functions

●  New meets old
Ø  https://www.youtube.com/watch?v=0lM-NyN06rA

Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a pig , Ee-igh, Ee-igh, oh!
With a oink oink here
And a oink oink there
Here a oink there a oink everywhere a oink oink
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

Compsci 101.2, Fall 2015 4.11

Creating Parameterized Function

What differs? Variable or Parameter

Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a horse, Ee-igh, Ee-igh, oh!
With a neigh neigh here
And a neigh neigh there
Here a neigh there a neigh everywhere a neigh neigh
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a pig , Ee-igh, Ee-igh, oh!
With a oink oink here
And a oink oink there
Here a oink there a oink everywhere a oink oink
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

Compsci 101.2, Fall 2015 4.12

Abstracting over code: functions
●  http://goo.gl/DfcPgI
●  See snarf for class work as well

●  These functions do not return values, they print
Ø  Illustrates problem decomposition, but …
Ø  Normally have each function return a value
Ø  Normally use the return value in function call

Compsci 101.2, Fall 2015 4.13

Part of http://goo.gl/DfcPgI (and snarf)

def eieio():
 print "Ee-igh, Ee-igh, oh!"

def refrain():
 print "Old MacDonald had a farm,",
 eieio()

def had_a(animal):
 print "And on his farm he had a",animal,",",
 eieio()

Lots of commas

Compsci 101.2, Fall 2015 4.14

Anatomy and Dissection of Print
●  Print generates output to a console, window, …

Ø  Depends on how program invoked
Ø  Basically used for: help with debugging and

creating output for copy/paste, view

●  Space inserted between comma-separated items
Ø  Can use string concatentation,
"hello"+str(x)

Ø  If print statemen ends with comma, no newline
Ø  Print anything that has a string representation…

print "hello,",x,"what's up",y

Compsci 101.2, Fall 2015 4.15

Abstraction over barnyards
●  In OldMacPrint we have pig() and fox() …

Ø  What's the same in these? What's different?
Ø  Capture differences in parameters/variables

●  Create new function:
Ø  def verse(animal, noise)

●  Look at pig() and fox() create new function
Ø  Call: verse("horse", "neigh")
Ø  Call: verse("cow", "moo")

http://bit.ly/101fall15-901-2
Compsci 101.2, Fall 2015 4.16

Vocabulary, grammar, rules: Python
●  Naming

Ø  The power of abstraction and parameterization
Ø  What is abstraction?
Ø  What are parameters? What has them?

●  Types
Ø  What's used in computing? What's used in Python?
Ø  Determine names of types in Python, use type(..)

●  Expressions and operators in Python
Ø  Arithmetic: +, -, *, /, %, **, …
Ø  Boolean: <, ==, >, and, ...
Ø  String: +, *, [], [:], [::]

Compsci 101.2, Fall 2015 4.17

Variables, Types, Values
●  Variable is a name associated with "storage"

Ø  Assign a value: x = 5
Ø  Print value of variable: print x
Ø  Use variable in expression: y = x * 55

●  String is a type and has a value
Ø  Assign: x = "hello"
Ø  Print value of variable: print x
Ø  Use in expression

• print len(x)
• print x + " world"

●  There are more types, this is a start!
Compsci 101.2, Fall 2015 4.18

Types and values in Python
●  Numbers are important, but not everything is a …

Ø  What is a number? In mathematics, in Python, in Java,
Ø  Integers, floating-point numbers, complex numbers, …

• We will worry about types, not speed or storage
(though these are a concern sometimes)

•  1,2,3 compared to 3.1415, 1.75, math.pi
•  5/2 compared to 5.0/2 compared to 5//2

●  Strings are sequences of characters, "python.org"
Ø  Somewhere these are converted to numbers: 0's and 1's
Ø  No real need to know this now.

Compsci 101.2, Fall 2015 4.19

Expressions, Operators, Types
●  Why is 3+5*4 different than (3+5)*4?

Ø  Where can you find information about precedence?
●  Why is 5/3 different than 5.0/3?

Ø  What will happen in Python 3? Accommodate in 2.7?

●  What happens when operators go bad?
Ø  What is "apple" + 3? What is "apple" + "pi"?
Ø  What is "apple" * 3? What is "apple" * "pi" ?

●  What is a variable in Python?
Ø  Name, Type, Value

Compsci 101.2, Fall 2015 4.20

Observations about String literals

●  Sometimes the details are tricky
Ø  "I " + "love " + 'Python'
Ø  "I " + "love " + '"Python"'
Ø  "I " + "love " + "'Python'"

●  When in doubt, use parentheses
Ø  What is "a" + "b" * 3
Ø  What is "a" "b" * 3

Compsci 101.2, Fall 2015 4.21

Names, Types, Values Revisited
name = "/data/poe.txt"
ff = open(name)
st = ff.read()
words = st.split()
print "# words in",name, "=",len(words)
●  What are the names in the code above?

Ø  Why are names important?

●  What are the types in the code above?
Ø  How do we get Python to help us answer this question

●  How do we re-use this code more generally
Ø  The power of names! The power of functions!

Compsci 101.2, Fall 2015 4.22

Functions: abstractions over code
●  Naming something gives you power

Ø  How do you read a file into a string?
Ø  What is length of a string? Of a list?

●  We can write and call functions
Ø  Re-use and/or modify
Ø  Store in module, import and re-use functions
Ø  Import standard modules and use functions from them

●  Functions can (should?) return a value
Ø  We've seen len return an int, what about file.read()?
Ø  Other functions return Strings, floats, or other types

Compsci 101.2, Fall 2015 4.23

Value Expert

●  Answer these questions

http://bit.ly/101fall15-0903-2

