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Programming Idioms and Ideas: PII

 Two kinds of loops: by-element, by-index
 Underneath often by index, e.g., problems when 

removing from a list while iterating
 Two kinds of structured data: strings and lists

 Soon to add sets, tuples, dictionaries
 Today: Strings, Lists, Sets, Oh My!
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Solving Problems, Transforming Data

 Consider the Common APT, useful in the 
interactive game Jotto you’ll write
 "seats", "tease" -> 4
 "seats", "meaty" -> 3
 "seats", "stats" -> 4

 Ideas: loop over word1, cross out in word2
 's', "*tats" 1  does it matter which ‘s’ ?
 'e', "*tats" 1  can you replace 's' with '*'?
 'a', "*t*ts" 2
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Ideas into code: thinking about loops

 As  you loop over 's', 't' … find and "mark"
 You can look up the 's' in word2, find index
 You can use index in word1 and in word2

for ch in word1:
dex = word2.find(ch)
if dex != -1:

for k in range(len(word1)):
dex = word2.find(word1[k])
if dex != -1:
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Using lists rather than strings

 Strings are immutable, can create new ones, 
but cannot change, lists are mutable!
 Using a list instead makes code easier, 

unfortunately list has no find, only index

for ch in word1:
dex = word2.find(ch)
if dex != -1:

word2 = word2[:dex] + '*' + word2[dex+1:]

for ch in list1:
if ch in list2:

dex = list2.index(ch)
list2[dex] = '*'
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Which loop is right? Index or Element?

 It Depends! (always a good answer)
 If you're going to always use one loop, to avoid 

having to make a choice, which one to use?
 Can you go simply from index to element?
 Can you go simply from element to index?
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Eating Well or Good Eating: APT
 http://www.cs.duke.edu/csed/pythonapt/eatinggood.html

 First think about solving this by hand…
 In translating to Python, what's easy? Harder?
 Can we find diners who eat at Elmo's easily?

 Structure
 Strings and lists
 Using .split(…)
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Eliminating Duplicates

 Could process a list, avoid double counting 
by checking, but much easier solution: set!
 Part of Python and many other languages
 Typically implemented to be very efficient in 

determining membership

 Set – collection like list, but not indexable
 Can .add(), .remove(), 
 Can iterate, cannot slice
 Can if foo in coll: where coll is set or list
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Thinking about sets

 Use list.append(x), use set.add(x)
 If already in set, nothing happens

 Can create set from a list all at once
uni = set([1,2,3,1,2,3,1,2,3,1,1,2,2,3,3])
 Later we'll see union |, intersection &, 

difference - and other operations ^ TBDiscussed
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Question Interlude

http://bit.ly/101fall15-1008-1
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Summary (from wikibooks)
 set1 = set()                   # A new empty set
 set1.add("cat")                # Add a single member
 set1.update(["dog", "mouse"])  # Add several members
 set1.remove("cat“) # Remove a member – error not there       
 for item in set1:              # Iteration or “for each element”
 len(set1)                      # Length, size
 isempty = len(set1) == 0       # Test for emptiness
 set1 = set(["cat", "dog"])     # Initialize set from a list
 set3 = set1 & set2             # Intersection
 set4 = set1 | set2             # Union
 set5 = set1 - set3             # Set difference
 set6 = set1 ^ set2             # Symmetric difference (elements in either set but not both)
 Is Subset:    set1 <= set2   # Subset test
 Is Supeerset: set1 >= set2     # Superset test
 set7 = set1.copy()             # shallow copy (copies set, not elts)
 set8.clear()                   # Clear, empty, erase
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Indexes within indexes, loop in loops

 Very useful in solving two-dimensional 
and other problems
 Lists are one-dimensional, for example
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List in a list and loop in a loop

 z = [ [1,2,3], [4,5,6], [7,8,9] ]
 for x in z: what is type of x?

 Use one loop inside another to access both
 Could be list of student info as well

for x in z:
for y in x:

#what type is y?
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Looping with Indexes

 How to understand a loop-in-a-loop?
 What changes in the inner loop

def doublenest(n):
for i in range(n):

for j in range(n):
print i,j

def doublenest2(n):
for i in range(n):

for j in range(i+1,n):
print i,j
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Create "couples"

 Aname is fixed as the inner loop executes
 See output to reinforce this idea

A = ['sam', 'lou', 'chris']
B = ['terry', 'brook', 'val']
for aname in A:

for bname in B:
print aname,",",bname

sam , terry
sam , brook
sam , val
lou , terry
lou , brook
lou , val
chris , terry
chris , brook
chris , val
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Midterm and what it means

 Working to succeed can lead to success

 Your score isn't as important as why and where 
you lost points

 We will provide a path and approach for those 
who want to rethink approach to 101

 Is it better to get 30% of everything, or 70% 
of 50% of what we cover?
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