
Compsci 101.2, Fall 2015 13.1

Programming Idioms and Ideas: PII

 Two kinds of loops: by-element, by-index
 Underneath often by index, e.g., problems when

removing from a list while iterating
 Two kinds of structured data: strings and lists

 Soon to add sets, tuples, dictionaries
 Today: Strings, Lists, Sets, Oh My!

Compsci 101.2, Fall 2015 13.2

Solving Problems, Transforming Data

 Consider the Common APT, useful in the
interactive game Jotto you’ll write
 "seats", "tease" -> 4
 "seats", "meaty" -> 3
 "seats", "stats" -> 4

 Ideas: loop over word1, cross out in word2
 's', "*tats" 1 does it matter which ‘s’ ?
 'e', "*tats" 1 can you replace 's' with '*'?
 'a', "*t*ts" 2

Compsci 101.2, Fall 2015 13.3

Ideas into code: thinking about loops

 As you loop over 's', 't' … find and "mark"
 You can look up the 's' in word2, find index
 You can use index in word1 and in word2

for ch in word1:
dex = word2.find(ch)
if dex != -1:

for k in range(len(word1)):
dex = word2.find(word1[k])
if dex != -1:

Compsci 101.2, Fall 2015 13.4

Using lists rather than strings

 Strings are immutable, can create new ones,
but cannot change, lists are mutable!
 Using a list instead makes code easier,

unfortunately list has no find, only index

for ch in word1:
dex = word2.find(ch)
if dex != -1:

word2 = word2[:dex] + '*' + word2[dex+1:]

for ch in list1:
if ch in list2:

dex = list2.index(ch)
list2[dex] = '*'

Compsci 101.2, Fall 2015 13.5

Which loop is right? Index or Element?

 It Depends! (always a good answer)
 If you're going to always use one loop, to avoid

having to make a choice, which one to use?
 Can you go simply from index to element?
 Can you go simply from element to index?

Compsci 101.2, Fall 2015 13.6

Eating Well or Good Eating: APT
 http://www.cs.duke.edu/csed/pythonapt/eatinggood.html

 First think about solving this by hand…
 In translating to Python, what's easy? Harder?
 Can we find diners who eat at Elmo's easily?

 Structure
 Strings and lists
 Using .split(…)

Compsci 101.2, Fall 2015 13.7

Eliminating Duplicates

 Could process a list, avoid double counting
by checking, but much easier solution: set!
 Part of Python and many other languages
 Typically implemented to be very efficient in

determining membership

 Set – collection like list, but not indexable
 Can .add(), .remove(),
 Can iterate, cannot slice
 Can if foo in coll: where coll is set or list

Compsci 101.2, Fall 2015 13.8

Thinking about sets

 Use list.append(x), use set.add(x)
 If already in set, nothing happens

 Can create set from a list all at once
uni = set([1,2,3,1,2,3,1,2,3,1,1,2,2,3,3])
 Later we'll see union |, intersection &,

difference - and other operations ^ TBDiscussed

Compsci 101.2, Fall 2015 13.9

Question Interlude

http://bit.ly/101fall15-1008-1

Compsci 101.2, Fall 2015 13.10

Summary (from wikibooks)
 set1 = set() # A new empty set
 set1.add("cat") # Add a single member
 set1.update(["dog", "mouse"]) # Add several members
 set1.remove("cat“) # Remove a member – error not there
 for item in set1: # Iteration or “for each element”
 len(set1) # Length, size
 isempty = len(set1) == 0 # Test for emptiness
 set1 = set(["cat", "dog"]) # Initialize set from a list
 set3 = set1 & set2 # Intersection
 set4 = set1 | set2 # Union
 set5 = set1 - set3 # Set difference
 set6 = set1 ^ set2 # Symmetric difference (elements in either set but not both)
 Is Subset: set1 <= set2 # Subset test
 Is Supeerset: set1 >= set2 # Superset test
 set7 = set1.copy() # shallow copy (copies set, not elts)
 set8.clear() # Clear, empty, erase

Compsci 101.2, Fall 2015 13.11

Indexes within indexes, loop in loops

 Very useful in solving two-dimensional
and other problems
 Lists are one-dimensional, for example

Compsci 101.2, Fall 2015 13.12

List in a list and loop in a loop

 z = [[1,2,3], [4,5,6], [7,8,9]]
 for x in z: what is type of x?

 Use one loop inside another to access both
 Could be list of student info as well

for x in z:
for y in x:

#what type is y?

Compsci 101.2, Fall 2015 13.13

Looping with Indexes

 How to understand a loop-in-a-loop?
 What changes in the inner loop

def doublenest(n):
for i in range(n):

for j in range(n):
print i,j

def doublenest2(n):
for i in range(n):

for j in range(i+1,n):
print i,j

Compsci 101.2, Fall 2015 13.14

Create "couples"

 Aname is fixed as the inner loop executes
 See output to reinforce this idea

A = ['sam', 'lou', 'chris']
B = ['terry', 'brook', 'val']
for aname in A:

for bname in B:
print aname,",",bname

sam , terry
sam , brook
sam , val
lou , terry
lou , brook
lou , val
chris , terry
chris , brook
chris , val

Compsci 101.2, Fall 2015 13.15

Midterm and what it means

 Working to succeed can lead to success

 Your score isn't as important as why and where
you lost points

 We will provide a path and approach for those
who want to rethink approach to 101

 Is it better to get 30% of everything, or 70%
of 50% of what we cover?

32 37 41 44 45 48 49 49
50 50 54 54 55 56 56 57 57 58 58 58 59
60 61 61 62 62 63 65 65 65 66 66 66 67 67 68 69 69
70 71 72 72 73 73 73 73 74 74 74 74 75 76 76 76 77 77 78 79 79 79 79
80 80 80 80 80 81 81 81 82 82 82 82 82 82 82 83 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 85 85 85 85 85 85 85
86 86 86 86 86 86 86 86 86 86 86 86 86 87 87 87 87 87 87 87 87 87 87 88 88 88 88 88 88 88 88 88 88 88 88 89 89 89 89 89 89 89 89 89 89
90 90 90 90 90 90 90 90 90 90 90 90 90 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92
93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 95
96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 98
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 100 100 100 100 100 100 100 100 100 100

