

Why Parallel Processing?

Divide and Conquer

<u>Problem</u> Single machine cannot complete the computation at hand

Solution Parallelize the job and distribute work among a network of machines

Issues Arise in Parallel Processing

View the world from the eyes of a single worker

- How do I parallelize an algorithm?
- How do | partition my dataset?
- How do I maintain a single consistent view of a shared state?
- How do I recover from machine failures?
- How do I allocate cluster resources?
- •

Think distributed

Think distributed

Finding majority element in a distributed dataset

Think distributed

Spark Background

Arose from an academic setting

- Amplab UC Berkeley
- Project Lead: Dr. Matei Zaharia
- First paper published on RDD's was in 2012
- Open sourced from day one, growing number of contributors
- Released its 1.0 version May 2014. Currently in 1.4.1
- Databricks company established to support Spark and all its related technologies. Matei currently sits as its CTO
- Amazon, Alibaba, Baidu, eBay, Groupon, Ooyala, OpenTable, Box, Shopify, TechBase, Yahoo!

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split('\t')(2))
messages.persist()
```

messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)

Resilient Distributed Datasets (RDDs)

- Main object in Spark's universe
- Think of it as representing the data at that stage in the operation
- Allows for coarse-grained transformations (e.g. map, group-by, join)
- Allows for efficient fault recovery using lineage
 - -Log one operation to apply to many elements
 - Recompute lost partitions of dataset on failure
 - No cost if nothing fails

RDD Actions and Transformations

Transformations are realized when an action is called

Transformations

- Lazy operations applied on an RDD
- Creates a new RDD from an existing RDD
- Allows Spark to perform optimizations
- e.g. map, filter, flatMap, union, intersection, distinct, reduceByKey, groupByKey

Actions

- Returns a value to the driver program after computation
- e.g. reduce, collect, count, first, take, saveAsFile

RDD Representation

- Simple common interface:
 - –Set of partitions
 - -Preferred locations for each partition
 - –List of parent RDDs
 - -Function to compute a partition given parents
 - Optional partitioning info
- Allows capturing wide range of transformations

Spark Cluster

Driver

- Entry point of Spark application
- Main Spark application is ran here
- Results of "reduce" operations are aggregated here

Spark Cluster

Master

- Distributed coordination of Spark workers including:
 - Health checking workers
 - Reassignment of failed tasks
 - Entry point for job and cluster metrics

Worker

Spawns executors to perform tasks on partitions of data

The Spark Family

Cheaper by the dozen

- Aside from its performance and API, the diverse tool set available in Spark is the reason for its wide adoption
 - 1. Spark SQL
 - 2. Spark Streaming
 - 3. MLlib
 - 4. GraphX

Disk Based vs Memory Based Frameworks

Acyclic data flow

- Disk Based Frameworks
 - Persists intermediate results to disk
 - Data is reloaded from disk with every query
 - Easy failure recovery
 - Best for ETL like work-loads
 - -Examples: Hadoop, Dryad

Disk Based vs Memory Based Frameworks

Reuse working data set in memory

- Memory Based Frameworks
 - Circumvents heavy cost of I/O by keeping intermediate results in memory
 - Sensitive to availability of memory
 - Remembers operationsapplied to dataset
 - Best for iterative workloads
 - –Examples: Spark, Flink

Image courtesy of Matei Zaharia, Introduction to Spark

Clear win for iterative applications

Ad-hoc batch queries

SELECT pageURL, pageRank FROM rankings WHERE pageRank > X

Lambda Architecture

Lambda Architecture

Unified Framework

Lambda Architecture

