Data Model and Storage

in NoSQL Systems
(Bigtable, HBase)

Slides from Mohamed Eltabakh

Bigtable Data Model

[Column Fa\milzy_]

-y

"contents:” anchor:cnnsi.com” "anchor:my.look.ca"
| | l

T T T T T T

Row key . . ' ! ! '

I W OECg Sty " | . . 1

" "] = ‘TIII1 n= «F | 3 X - = =
com.cnn.www I I RS B . .

~HItnn=... C - .
T : J
1 . :

[TimeStamp J

HBase’s Data Model 1s similar

2

Data Organization in HBase

All data 1s stored in Tables

Table rows have exactly one Key, and all rows 1n a table are
physically ordered by key

Tables have a fixed number of Column Families
Each row can have many Columns in each column family
Each column has a set of values, each with a timestamp

Each rowkey:columnfamily:column:timestamp
combination represents coordinates for a Cell

HBase Logical View

Implicit PRIMARY KEY in
RDBMS terms Datais all byte [] in HBase

Different types of] . e s
data separated into cuttmg info: { ‘height’: ‘9ft’, ‘state” ‘CA’ }

different oles { ‘ASF’: ‘Director’, ‘Hadoop’ ‘Founder’ }

“column families” tlipcon info: { ‘height’: ‘5ft7, ‘state’: ‘CA’ }

roles: { ‘Hadoop’: ‘Committer’ @ts=2010,
‘Hadoop”: ‘PMC'@ts=2011, /
‘Hive’: “Contributor’ } 1

Different rows may have different sets / A single cell might have different

of columns(table is sparse) values at different timestamps

Useful for *-To-Many mappings

HBase: Keys and Column
Famailies

Each record is divided into Column Families

Each row has a Key
FERSON TABLE

nsus Data in Column Families

Each column family consists of one or more Columns

What 1s a Column Family?

* A Column Family is a group of related columns
* All columns must be in a column family

* Each row can have a completely different set of
columns for a column family

Column Columns:
Family:

Friends:Bob
Friends Friends:Chris

Friends:Jane

Rows and Cells

* Not exactly the same as rows in a traditional RDBMS

Key: a byte array

Data: Cells, qualified by column family, column, and
timestamp (not shown here)

Column
Families :
(Defined by the
Table)

Attributes

Friends

Columns:

(Defined by the
Row)

(May vary between
TOWS)

Attributes:Age
Attributes:Height
Friends:Bob

Friends:Jane

Cells:
(Created with Columns)

30

63

1 (Bob’s a cool guy)

0 (Jane and I don’t get along)

Cell Timestamps

All cells are created with a timestamp

Column family defines how many versions of a cell
to keep

Updates always create a new cell
Deletes create a tombstone

Queries can include an “as-of ” timestamp to return
point-in-time values

Column family named “anchor”

Column family named “Contexti” \

S Column | ke e s e
Tlme. “ s ut & : “ G w99
Nl content | Column “anchor:
: p B et : il :

~ Row key
° Key el
Byte array e — ‘
Serves as the primarykey [~ | g2 | hmb |
for the table SR R T Lo s ‘
~“comapac | | « .. |Column named “ppache.com
Indexed for fast lookup Cioheww |oo1n |G g i

* Column Family =i b7 o | vy ~“anchor:apache | “APACH

~.com” i

Has a name (string) | | L AR i

] S B U b e e “anchor:cnnsi.co | “CNN”
Contains one or more LRt e S RS e T S I S e
related columns e L et

t13 ; : “ anchor:my.look. “CNN .CO
: s313 ! Ca” +3s .. m”

 Column S , =
“com.cnn.w | “<html>
Belongs to one column RIESREE B Ol e e e
family T VLR, e o s ST
.) < : =2 - - “<htm1> .
Included inside the row et i e He e
* familyName:columnName t

“<html> |
» s

Version number for each row

 Version Number

Unique within each
key

By default—> System’s
timestamp

Data type is Long

* Value (Cell)
Byte array

Time

Column | et
~ Column “anchor:”

“content |

. »

- SO :

~“com.apac |

~ he.ww
W”

i haa9)
=3

~|value

TR RIS R e

Ay

~.com”

o \’ |

e “anchor:apache

“APACH
LR

“com.cnn.w |

- | “anchor:cnnsi.co |

RLETEITT

m

S : “ anc_hor:my.look.

ca”

&% “CNNco

»

m

T S

. WW

| “<html>

Hivwnp X5

e “<htm1> gl

S 3 ian-

“<html> |

22158

Notes on Data Model

» HBase schema consists of several Tables

« Each table consists of a set of Column Families
Columns are not part of the schema

« HBase has Dynamic Columns
Because column names are encoded inside the cells
Different cells can have different columns

Row key | Data

cutting info: { ‘height’: ‘9ft’, ‘state’: ‘CA’ }
“Roles” column family, Zoles: { ‘ASF'’: ‘Director’, ‘Hadoop': ‘Founder’ }

has different columns tlipcon info: { ‘height’: ‘5ft7, ‘state’: ‘CA’ }
in different cells roles: { ‘Hadoop’: ‘Committer’ @ts=2010,

‘Hadoop’: ‘PMC’'@ts=2011, /7
‘Hive: ‘Contributor’ } 1{ //

Notes on Data Model (Cont’d)

The version number can be user-supplied
- Even does not have to be inserted in increasing order

+ Version numbers are unique within each key

Table can be very sparse
Y sP Has two columns

* Many cells are empty [cnnsi.com & my.look.ca]

Keys are indexed as the primary key

Row Key Time Stamp||ColumnFamily contents ColumnFamily anchor

"com.cnn.www"|[t9 anchor:cnnsi.com = "CNN"

"com.cnn.www" anchor:my.look.ca = "CNN.com"
"com.cnn.www" contents:html = "<html>..."
"com.cnn.www" contents:html = "<html>..."
"com.cnn.www" contents:html = "<html>..."

HBase Physical Model

HBase Physical Model

Each column family is stored in a separate file
Key & Version numbers are replicated with each column family

Empty cells are not stored
Table 5.3. ColumnFamily contents

Row Key Time Stamp||ColumnFamily "contents:"

"com.cnn.www"|[th contents:html = "<html>..."
"com.cnn.www"|[tS contents:html = "<html>..."

HBase maintains a multi-
level index on values:

<key, column family, column
name tz'mggmmp > Table 5.2. ColumnFamily anchor
7.

"com.cnn.www"|[t3 contents:html = "<html>..."

Row Key Time Stamp||Column Family anchor

"com.cnn.www"||t9 anchor:cnnsi.com= "CNN"

"com.cnn.www"|[t8 anchor:my.look.ca = "CNN.com"

14

Row key | Data
cutting info: { ‘height’: ‘9ft’, ‘state’ ‘CA’ }

Example oles: { ‘ASF’: ‘Director’, ‘Hadoop’: ‘Founder’ }

Sorted
on disk by

Row key, Col _

key,
descending
timestamp

-

tlipcon info: { ‘height’: ‘5ft7, ‘state’: ‘CA’ }
roles: { ‘Hadoop’: ‘Committer’ @ts=2010,

‘Hadoop’: ‘PMC’@ts=201 1, a
‘Hive’: ‘Contributor’ } //

1nfo Column Famil
[T cmm

cutting info:height 1273516197868
cutting info:state 1043871824184 CA
tlipcon info:height 1273878447049
tlipcon info:state 1273616297446 CA

roles Column Family

Bl Row key | Column key | Timestamp ___| Cell value |

cutting roles:ASF 1273871823022 Director

cutting roles:Hadoop 1183746289103 Founder
tlipcon roles:Hadoop 1300062064923 PMC

tlipcon roles:Hadoop 1293388212294 Committer
tlipcon roles:Hive 1273616297446 Contributor

L I

Number of Milliseconds since Epoch

HBase Data Partitioning

* HBase scales horizontally

* Needs to split data over many RegionServers

* Regions are the unit of scale

HBase Architecture

Three Major Components

The HBaseMaster
* One master

The HRegionServer
* Many region servers

The HBase client

HBase Components

* Region
* A subset of a table’s rows, like horizontal range partitioning
* Automatically done

* RegionServer (many slaves)
- Manages data regions
+ Serves data for reads and writes

* Master
- Responsible for coordinating the slaves

+ Assigns regions, detects failures
* Admin functions

Regions & RegionServers

All HBase tables are broken into 1 or more regions
Regions have a start row key and an end row key
Each Region lives on exactly one RegionServer
RegionServers may host many Regions

When RegionServers die, Master detects this and
assigns Regions to other RegionServers

Region Distribution

-META- Table

Server

Node0l1
Node02

“Aaron” — “George”

“George” —
“Matthew”

“Matthew” —
“Zachary”

Users
NodeO1

~
AN

“Users” Table

Row Keys in Region
“Aaron” — “George”’

“Aaron”
“BOb”
“Chris”

i Row Keys in Region
“George” — “Matthew”

“George”

B Row Keys in Region
“Matthew?” — “Zachary”
“Matthew”

“Nancy”
“Zachary”

Big Picture

HRegionServer

HRegionServer

HRegion

HRegion

m{m[m[s
000000
00000

atalNode

EIN\EN

L]

O | ooogoo

i ooogg | gooogo

taNode

Qoo

oo

ool | ool

dINOU

diNOUEC

Use Case — Time Series

. Requirement Store real-time stock tick data
m-
09:15:03:001 179.16 179.18
MSFT 09:15:04:112 28.25 28.27
GOOG 09:15:04:114 624.94 624.99
IBM 09:15:04:155 179.18 179.19

* Requirement: Accommodate many simultaneous readers & writers

* Requirement: Allow for reading of current price for any ticker at any
point in time

Time Series Use Case —
RDBMS Solution
Historical Prices:

Ticker Varchar

Primary Key Timestamp DateTime

Sequence_Number Integer

Bid_Price Decimal

Ask Price Decimal

Latest Prices:

DataType

Primary Key Ticker Varchar
Bid_Price Decimal

Ask Price Decimal

Time Series Use Case —
HBase Solution

"
[Ticker].[Reverse_Timestamp]. rices:Bid

[Reverse_Sequence_Number] Prices:Ask

= No need to keep separate “latest price” table
= A scan starting at “ticker” will always return the latest
price row
= Let us analyze this solution further (reverse timestamps

are explained at the link below):
http://hbase.apache.org/0.94/book/rowkey.design.html

HBase vs. HDEFES
| PRinHDFS/MR | HBase |

Write pattern Append-only Random write, bulk
incremental

Read pattern Full table scan, partition Random read, small
table scan range scan, or table
scan

Hive (SQL) Very good 4-5x slower
performance

Structured storage Do-it-yourself / TSV / Sparse column-family
SequenceFile / Avro /? data model

Max data size 30+ PB ~I1PB

HBase vs. RDBMS
T hoeMs heme

Data layout Row-oriented Column-family-
oriented

Transactions Multi-row ACID Single row only

Query SQL get/put/scan/etc *

lancuace
Security Authentication/Authorizatio Work in progress
n

Indexes On arbitrary columns Row-key only
Max data size TBs ~IPB

Read/write 1000s queries/second Millions of
throughput queries/second
limits

