Data Engineering
 Introduction to Parallel Execution

Shivnath Babu

Introduction to Parallel Execution

Translates Q into an execution plan and runs the plan

Data resides $\xrightarrow{\begin{array}{l}\text { on one or } \\ \text { more } \\ \text { machines }\end{array}}$

Example: At a Company

Query 1: Is there an employee named "Nemo"?
Query 2: What is "Nemo's" salary?
Query 3: How many departments are there in the company?
Query 4: What is the name of "Nemo's" department?
Query 5: How many employees are there in the "Accounts" department?

Employee

ID	Name	DeptID	Salary	\ldots
10	Nemo	12	$\mathbf{1 2 0 K}$	\ldots
20	Dory	156	$\mathbf{7 9 K}$	\ldots
40	Gill	89	76 K	\ldots
52	Ray	34	$\mathbf{8 5 K}$	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots

Department

ID	Name	\ldots
12	IT	\ldots
34	Accounts	\ldots
89	HR	\ldots
156	Marketing	\ldots
\ldots	\ldots	\ldots

Counting the number of records that will be read or transferred over the network in a parallel execution

- We have a dataset R with two attributes A and B
- There are 10000 records in R, with 2500 unique values of A and 5000 unique values of B
- See Figure 1 on next slide

Records in \mathbf{R}

2499	4997
2499	4997
2499	4998
2499	4998
2500	4999
2500	4999
2500	5000
2500	5000

For x in $1,2,3, \ldots, 2499,2500$

Figure 1: Figure showing the contents of records in R

Counting exercise (contd.)

- Dataset R has 10 partitions
- R is stored on 10 machines, with one partition per machine
- We want to find the result of:

```
Select a, Max(B)
From R
Where B>= 1000 and B < 2000
Group By A
```

- See Figure on next slide

M1:
1 <= A
$<=250$

Data Partition

M2:

$$
251<=\mathrm{A}
$$

$$
<=500
$$

Data Partition

Data Partition

Data Partition

M5:

$$
1001<=A
$$

$$
\text { <= } 1250
$$

Send records with Send records with

$$
1<=A<=1250 \quad 1251<=A<=2500
$$

M6:
1251 <= A
M7:
1501 <= A
$<=1750$

Data Partition

Data Partition

Data Partition
Data Partition

Partitioning and Load Balancing

- Looking at data as Key-Value pairs
- The Map Vs. Reduce model of parallel execution
- Partitioning:
- Range Partitioning
- Hash partitioning
- List partitioning
- The Shuffle step in parallel execution
- Load balancing and skew problems

Same example (contd.)

- Suppose records in R are partitioned randomly across M1-M10. What, if anything, changes?

Other Common Tasks that Need Parallel Execution

- Word counting
- Inverted indexes

Page A A map output

This page contains so much text Page B My page contains text too	

Other Common Tasks that Need Parallel Execution

- TF-IDF
- http://blog.cloudera.com/wp-content/uploads/ 2010/01/5-MapReduceAlgorithms.pdf

Other Common Tasks that Need Parallel Execution

- Sorting
- PageRank (will consider this when we study Graph Processing)

Join Example: Store that Sells Cars

	Owners of	Make	Model	OwnerID	ID	Name
Age						
Owda Honda Accords who are $<=$ 23 years old	Honda	Accord	12	12	Nemo	$\mathbf{2 2}$
	Honda	Accord	156	156	Dory	$\mathbf{2 1}$
Join (Cars.OwnerID = Owners.ID)						

Filter (Make = Honda and

Model =Accord)		
Cars		
Make	Model	OwnerID
Honda	Accord	12
Toyota	Camry	34
Mini	Cooper	89
Honda	Accord	156
\ldots	\ldots	\ldots

Filter (Age <= 23)
Owners

ID	Name	Age
12	Nemo	$\mathbf{2 2}$
34	Ray	$\mathbf{4 2}$
89	Gill	$\mathbf{3 6}$
156	Dory	$\mathbf{2 1}$
\ldots	\ldots	\ldots

Parallel Execution of Joins in

 MapReduce Style- Two typical types of join
- Map-side join
- Reduce-side join

Map-side Join

REDUCE-SIDE JOIN

