Data Engineering Introduction to Parallel Execution

Shivnath Babu

Introduction to Parallel Execution

Example: At a Company

Query 1: Is there an employee named "Nemo"?

Query 2: What is "Nemo's" salary?

Query 3: How many departments are there in the company?

Query 4: What is the name of "Nemo's" department?

Query 5: How many employees are there in the

"Accounts" department?

Employee

ID	Name	DeptID	Salary	
10	Nemo	12	120K	•••
20	Dory	156	79K	
40	Gill	89	76K	
52	Ray	34	85K	
		•••	•••	

Department

ID	Name	
12	ΙΤ	
34	Accounts	
89	HR	
156	Marketing	
•••		

Counting the number of records that will be read or transferred over the network in a parallel execution

- We have a dataset R with two attributes A and B
- There are 10000 records in R, with 2500 unique values of A and 5000 unique values of B
- See Figure 1 on next slide

Records in R В A R has a total of T(R)=10000 records 1 2 Algebraic representation of 3 2 records in R 2 3 A B 2 4 2x-12 Х 4 2x-1Х 2xХ 2xХ For x in 1,2,3,...,2499,2500 2499 4997 2499 4997 2499 4998 2499 4998 2500 4999 4999 2500 2500 5000 2500 5000

Figure 1: Figure showing the contents of records in R

Counting exercise (contd.)

- Dataset R has 10 partitions
- R is stored on 10 machines, with one partition per machine
- We want to find the result of:

```
Select A, MAX(B)
From R
Where B >= 1000 and B < 2000
Group By A
```

See Figure on next slide

Data Partition

Data Partition

Send records with Send records with

R1

R2

Partitioning and Load Balancing

- Looking at data as Key-Value pairs
- The Map Vs. Reduce model of parallel execution
- Partitioning:
 - Range Partitioning
 - Hash partitioning
 - List partitioning
- The Shuffle step in parallel execution
- Load balancing and skew problems

Same example (contd.)

 Suppose records in R are partitioned randomly across M1-M10. What, if anything, changes?

Other Common Tasks that Need Parallel Execution

- Word counting
- Inverted indexes

Other Common Tasks that Need Parallel Execution

TF-IDF

http://blog.cloudera.com/wp-content/uploads/ 2010/01/5-MapReduceAlgorithms.pdf

Other Common Tasks that Need Parallel Execution

- Sorting
- PageRank (will consider this when we study Graph Processing)

•

Join Example: Store that Sells Cars

Owners of
Honda Accords
who are <=
23 years old

Make	Model	OwnerID	ID	Name	Age
Honda	Accord	12	12	Nemo	22
Honda	Accord	156	156	Dory	21

Join (Cars.OwnerlD = Owners.ID)

Filter (Make = Honda and Model = Accord)

Cars

Make	Model	OwnerID
Honda	Accord	12
Toyota	Camry	34
Mini	Cooper	89
Honda	Accord	156

Filter (Age <= 23)
Owners

ID	Name	Age
12	Nemo	22
34	Ray	42
89	Gill	36
156	Dory	21

Parallel Execution of Joins in MapReduce Style

- Two typical types of join
 - Map-side join
 - Reduce-side join

Map-side Join

REDUCE-SIDE JOIN

