
COMPSCI 527 — Homework 3
Due on October 8, 2015

Work on this assignment either alone or in pairs. You may work with different partners on different assignments, but you can
only have up to one partner for any one assignment. You may not talk about this assignment with others until all of you have
handed in their work. See Mechanics→Homework on the class web page for details on the homework policy.

Hand in your work as explained in the instructions for homework 1 (of course, change hw1 to hw3).

The first three problems ask for somewhat inefficient but simple code written from scratch (except for pca), both so you understand
the details and because we want to explore different ways to randomize trees in a random forest, while the MATLAB implementation
envisions bagging only. The last problem lets you use the MATLAB Statistics toolbox, which is implemented more efficiently and has
several facilities we can use in our exploration.

1. If you type

load fisheriris

at the MATLAB prompt, the two variables meas and species are loaded into your workspace. The feature array meas is N ×D =
150× 4 and the label cell array species is N × 1 = 150× 1. This is our training set for this and the subsequent two problem. Let us
make a data structure with this set as follows:

T.X = meas;
[T.y, T.labelMap] = numberize(species);

where the function numberize is provided with this assignment. It takes a cell array of strings and converts it to integers according
to the map T.labelMap it returns. The integers start at 1, and value ` in T.y corresponds to string T.labelMap{`}. So the
labelMap shows the meaning of the numerical labels.

Data arrays in the MATLAB Statistics toolbox store features as rows rather than columns. This may require some care when translat-
ing concepts from the class notes—where data are in columns—to MATLAB code. Even when we do not use the Statistics toolbox, we
use its conventions in this assignment, to make it easier to write consistent code.

The features in the training set T are four-dimensional,D = 4. While this is a small dimensionality, we want to reduce it even further,
to D = 2, so we can plot and draw things. We perform this reduction by Principal Component Analysis (PCA) using the function pca
from the MATLAB Statistics toolbox. The somewhat awkward syntax of this function is encapsulated for you in the function PCA
(uppercase) provided with this assignment. If you say

[V, mu, sigma2] = PCA(T.X, k)

with k ≤ D, then the output transformation matrix V is D × k, and corresponds to the transpose

V = UT

of the matrix U described in the class notes on the PCA. This is because MATLAB features are rows rather than columns of T.X, so you
can multiply data by V itself from the right rather than having to transpose U . If you want the full, D ×D transformation matrix, you
can use any of the following statements:

[V, mu, sigma2] = PCA(T.X)
[V, mu, sigma2] = PCA(T.X, Inf)
[V, mu, sigma2] = PCA(T.X, size(T.X, 2))

The 1 × D row vector mu is the mean of the rows of T.X. The vector sigma2 contains D entries. These entries are the variances
(variances, not standard deviations!) of the diagonal empirical covariance matrix of the data centered with mu and transformed by V.

(a) Write a function with header

function Y = compress(X, V, mu, k)

that takes an N × D feature matrix X, a PCA transformation matrix V and row vector mu as computed by PCA, and an optional
integer scalar argument k. The function compress returns a N ×Dout matrix Y with the principal components of the data in X.
If k is unspecified or is at least equal to the number h of columns in V, then the dimensionality Dout of the output data is equal to
h. Otherwise, Dout is equal to k.

Show your code for compress only. To include the code in your LATEX file use the command

\VerbatimInput[fontsize=\small,fontshape=n,xleftmargin=15mm]{compress.m}
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and make sure your lines of code are short enough to fit on the page. Use a similar command for other functions in this assignment.

Also make a figure that shows the data in the fisheriris training set T reduced in dimensionality as follows:

[V, mu, sigma2] = PCA(T.X);
T.X = compress(T.X, V, mu, 2);

To display the data, plot each point T.X(n, :) as a red, green, or blue dot depending on whether T.y(n) is 1, 2, or 3. It is
more efficient to loop over the three label values rather than over the points (recall that plot can take vector inputs). Once the
plot is complete, scale and tighten the axes properly as follows:

axis equal
axis tight

(b) What fraction of the variance in the input data does the PCA capture? Explain your reasoning and show your calculation.

2. In this exercise you will grow (train) a classification tree from scratch with code written in recursive form. While you should follow
the class notes closely as far as code structure, some functions will have more arguments, in order to try out various options. Also,
MATLAB does not allow question marks in function names, so your split? function will be called OkToSplit (admittedly not as
nice). Also check that impurity is positive in OkToSplit. What the functions below are supposed to do is explained in the class notes.

(a) Write trainTree in recursive form following the notes and without using functions from the MATLAB Statistics toolbox.
However, use header

function tau = trainTree(S, depth, random, dMax, sMin)

The meaning of the arguments is as follows (the term “optional” below means that the caller need not specify the argument, but
your function still needs to handle the corresponding parameter properly):

• S is a training set of the same format as the set T used in the previous exercise.

• depth is the depth of the node currently being built (zero for the root).

• random (optional) is true if the dimension on which to split at every node is to be chosen at random. Default is false.

• dMax (optional) is the maximum depth of the tree. Default is Inf.

• sMin (optional) is the minimum number of training samples in a leaf. Default is 1.

A skeleton for trainTree that also shows how to handle optional arguments is provided with this assignment. If the function
calls itself internally, it needs to specify all arguments, so they are passed properly to other invocations. All helper functions
should be included in the same file (see skeleton). It is OK to use histcounts if you like, but, if you do, be careful with its
arguments. Keep it simple! In particular, the tree data structure should be as described in the notes. Just show your code for now.

PROGRAMMING NOTE. If the training set contains two samples (x1, y1) and (x2, y2) with x1 == x2 but y1 6= y2, then it may
be impossible to split the set any further. Logically, you would have to check for this occurrence in OkToSplit, but it is more
efficient to keep this function simple. Instead, allow for the possibility that findSplit returns nothing, and stop splitting in that
case.

(b) When the training features are two-dimensional, we can draw line segments on the feature plane that show how a particular
classification tree partitions the plane. Write a function with header

function p = treePartition(tau, box)

that takes a tree grown by trainTree on a training set with two-dimensional features and a bounding box, and returns an array
of line segments. Specifically, if you plot the features as in exercise 1(a), type

box = [get(gca, 'XLim'); get(gca, 'YLim')]';
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(after the axis tight command) to create the initial bounding box. The variable box will be an array of the following form:[
xmin ymin

xmax ymax

]
that describes a rectangle that bounds all the features (the y symbol here denotes the second component of a 2D feature, not a
label). If J segments are needed to describe the partition, then the output p is a 2 × 2 × J array, where p(:, :, j) has the
form [

xa ya
xb yb

]
where the two points (xa, ya) and (xb, yb) are the endpoints of segment j. You can plot all segments in black with the single
command

plot(squeeze(p(:, 1, :)), squeeze(p(:, 2, :)), 'k');

Show your code for treePartition and two figures with the resulting partitions, each superimposed on the plot you made in
exercise 1(a), for two different trees trained with the following statements:

tau1 = trainTree(T, 0, false);
tau2 = trainTree(T, 0, true);

(so you use default values for dMax and sMin). Here, T is the two-dimensional fisheriris training set from before. Put
intelligible titles or captions on your figures so it is clear which is which. Something like Optimal Splitting Dimension, not just
tau1. [Hint: Write a recursive function.]

3. We now write a classifier that uses a tree grown with trainTree.

(a) Write a function with header

function y = treeClassify(x, tau)

following the class notes, and show your code. The function returns the label y that classification tree tau assigns to feature x.

HINT: To check if the current node is a leaf you can simply say

if isempty(tau.d)

(b) Write a function with header

function e = err(tau, S)

that takes a tree tau grown with trainTree and a training set S and computes the empirical error on S of the classification tree
tau. It is OK to loop over training samples for this question. Show your code for err and report the training errors for the
trees tau1 and tau2 you developed earlier.

(c) Explain briefly why the empirical errors you found in your previous answer make sense.

(d) Show two figures with the partitions (superimposed on the training data plot) for trees

tau3 = trainTree(T, 0, false, 3);
tau4 = trainTree(T, 0, true, 3);

and report the corresponding training error rates. Explain briefly why these two error rates are positive and why the relation
between them makes sense.
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(e) Write a function with header

function e = cverr(S, K)

that computes the K-fold cross-validation error rate on training set S without using functions from the MATLAB Statistics and
Machine Learning toolbox. Your trees should use dmax = 3, smin = 1, and optimal split dimensions. Make sure that the folds are
as equal in size as possible, but the samples in each of them are chosen randomly out of S. Show your code.
HINT: If you need a random permutation of the integers from 1 to N you can say

[˜, index] = sort(rand(N, 1));

(f) Run the following command 5 times on the fisheriris training set T compressed to two-dimensional features, and report the
values you obtain:

cve = cverr(T, 4);

Why are they not the same?

(g) Do the same with

looe = cverr(T, length(T.y));

HINT: You may want to write a for loop, start execution, and go for coffee.

(h) What is the name of the cross-validation method you used in your answer to the previous question? In what way is it better than
4-fold cross-validation? Why do people not use the method in the previous question all the time?

(i) In the problems above, we reduced the dimensionality of the features in training set T by PCA. Another way to reduce the
dimensionality from D to Dout is to pick Dout of the D features, that is, pick Dout of the D columns of T.X. The problem
of which Dout columns to choose is called feature selection. Solve this problem by leave-one-out cross-validation for the full
fisheriris training set with D = 4 and with Dout = 1. (So you are choosing the single most informative feature out of four).
Show your code for doing this, report all your cross-validation errors, and state what column you would choose.

(j) How does the leave-one-out cross-validation error for the classifier based on the feature you chose in your previous answer
compare with that for a classifier that uses the highest-variance feature computed by PCA? Explain. Do not show your code for
this question, just give your answer and explanation.

4. We now explore random forests and HOG features with the tools available in the MATLAB Computer Vision System and Statistics
and Machine Learning toolboxes. These toolboxes are alway somewhat in flux. I developed this assignment and my own sample solution
with version R2015a of MATLAB. Older versions may miss some of the functionality or have slightly different syntax. So please use
version R2015a or later, or modify your call syntax as needed.

Towards the bottom of the web page http://pascal.inrialpes.fr/data/human/, in the paragraph just above Dis-
claimer, you will find a link to the INRIA Person Database that provides separate training and test data for pedestrian detectors.
Download that set and install it in some directory whose name (either the absolute name or the name relative to your MATLAB working
directory for this assignment) you place into the MATLAB string variable dataDir. In your data directory you will then have a sub-
directory called INRIAPerson, which is what the .tar file you downloaded expands to. Do not change that subdirectory name or
anything inside it.

The function readData provided with this assignment is called as follows:

[HOGTrain, HOGTest] = readData(dataDir);

This function also has an optional argument to specify the size of the HOG window, but you will not need to set this argument for this
assignment—just use the default value. Running this function takes a while because it computes HOG descriptors to build a training set
and a test set from many images. For the training set, it reads 2416 small pedestrian images and 1218 larger images that do not contain
pedestrians. It then extracts ten random windows from each of the larger images, to use as negative samples. Finally, it computes HOG
descriptors for all of the 2,416 + 12,180 = 14,596 resulting images and places them in the HOGTrain structure with appropriate labels
and label map {'+', '-'}. To compute HOG descriptors, readData calls imgHOG, also provided with this assignment, which in
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turn calls the extractHOGFeatures function from the Computer Vision System toolbox. This entire procedure is then repeated for
the test data, which contains 5,656 samples.

You may want to look at some of the images to get a feel for what they look like. If you want to see the HOG descriptors for image
img, you can call extractHOGFeatures with two output arguments. The first is the HOG descriptor, and the second is an image
that visualizes the descriptor. You can view the second output with the MATLAB function plot.

To grow a random forest with nTrees trees on training set Train, you say

forest = fitensemble(Train.X, Train.y, 'Bag', nTrees, 'tree', 'Type', 'classification');

where fitensemble is part of the MATLAB Statistics and Machine Learning toolbox. This function does only bagging, and provides
no way to also randomize the split dimension.

(a) Read the MATLAB help for the ClassificationTree class to figure out how MATLAB represents trees. Focus in particular
on the following properties of the class:

• Children, which corresponds to τ.L and τ.R in the class notes;

• CutPoint, which corresponds to τ.t;

• CutPredictor, which corresponds to τ.d;

• PredictorNames, which corresponds to a training set’s labelMap.

Once you understand the representation, copy your treePartition function from problem 2 to a file ctreePartition.m,
and modify the latter to make it work on MATLAB classification trees. Test your code on the first tree of a 100-tree forest trained
on a version of the HOGTrain set compressed by PCA (use your compress function) to 2-dimensional features. Once you have
the forest in variable forest, you can retrieve the first tree with the call

t1 = forest.Trained{1};

Show both your code for the function ctreePartition only and the figure obtained by overlaying the partition on top of
color-coded data points, as you did in problem 2. Draw positive points in blue and negative ones in red, and remember to issue the
commands

axis equal
axis tight

before you compute the partition, so you use the correct bounding box as explained in problem 2. Use an entire page for the
picture and rotate it 90 degrees as follows:

\begin{sidewaysfigure}
\centerline{\includegraphics[width=\textwidth]{<your file name here>}}
\caption{Partition induced by the first tree in the forest.}
\label{fig:large_partition}

\end{sidewaysfigure}

The sidewaysfigure environment is defined in the LATEX rotating package, which is loaded for you in the .tex template
file.

(b) Do you expect a low generalization error rate from the classification tree t1 you computed in part (a) of this problem? Explain
briefly.

(c) The MATLAB Statistics and Machine Learning toolbox provides functions loss and oobloss that compute the error rate and
out-of-bag error rate for a classifier. Read the help pages for these functions1, then use these functions with the option 'mode' set
to 'cumulative' to create a plot of the following three quantities as functions of the number of trees used in the forest trained
on the full training set HOGTrain (without dimensionality reduction):

1. Training error rate

2. Out-of-bag error rate

3. Test error rate
1The function name loss is overloaded. You want the help page for the version for classification and regression trees.
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You only need a single forest with nTrees equal to 100 to create these plots. Turn in a single diagram with the three plots in
different colors. Label the abscissa “number of trees” and the ordinate “classification error” and add a legend (look up the help for
the legend command) that shows which curve is which. Just show your figure, not your code.

(d) Which plot(s) in your previous figure are good estimates of the generalization error? Why? What does the shape of these plots tell
us about the tendency of random forests to overfit?

(e) Let us now fix the number of trees in the forest to 100, and let us examine the effects of compressing the HOG features with PCA.
Let

nPCA = [3780 1000 500 200 100 50 20 10 5 2];

be a vector of feature dimensions to consider. For each element in nPCA, compute the out-of-bag error rate with the function
oobLoss and without specifying any option, so you get a single rate for the entire forest rather than a cumulative plot. Use the
MATLAB function semilogx to plot the error rate versus the number of principal components with the x axis on a logarithmic
scale. Your diagram should have appropriate labels on the axes. Give only a figure, not your code. [Hint: Compute a full PCA
just once, and then use compress several times.]

(f) How many components would you use? Can you guess why PCA helps or hurts? Explain briefly.

(g) For the 100-tree random forest you just examined and an optimal number of principal components, make a 2× 2 table that shows
true positive, true negative, false positive, and false negative testing error rates. Express these values with percent figures, rounded
to one digit after the decimal period. The MATLAB function predict can be used to classify a dataset with a given forest. The
.tex file provided with this assignment has a template table for you. Show your code and your table.
HINT: To say that a test sample yields a “true positive” means “this classification result is positive in that the classifier said that it
is a pedestrian, and it is true in that the annotation in the test set said so as well.” Similarly for the other three error rates.
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