
COMPSCI 527 — Homework 4
Due on October 29, 2015

Work on this assignment either alone or in pairs. You may work with different partners on different assignments, but you can
only have up to one partner for any one assignment. You may not talk about this assignment with others until all of you have
handed in their work. See Mechanics→Homework on the class web page for details on the homework policy.

Hand in your work as explained in the instructions for homework 1 (of course, change hw1 to hw4).

1. A multi-layered neural net can be represented in MATLAB with an array net of data structures, where each element encodes a layer
and has fields

• gain: a Dout × Din matrix of gains (or weights), where Din is the dimensionality of the input and Dout is the number of
activations in the layer.

• bias: a Dout × 1 column vector of biases.

• h: a handle to a function that computes the nonlinearity for that layer.

It is convenient to compute the outputs that the network returns on several inputs x1, . . . ,xN simultaneously. In that case, the inputs
are collected in a single D × N array X, where D is the dimensionality of the input. Because of this, the function whose handle is h
should be prepared to take a matrix as input. The effect of calling that function on a matrix of activations should be to apply the function
to each entry of the matrix and return the matrix of the results (same size as the input).

(a) Write a concise MATLAB function with header

function X = nn(X, net)

that takes such a matrix X of inputs and a multi-layered neural net net as described above and returns a matrix whose columns
are the outputs of the net for the inputs in X. Hand in your code. Here and elsewhere, do not cut-and-paste, but rather use the
VerbatimInput command. For instance,

\VerbatimInput[fontsize=\small,fontshape=n,xleftmargin=15mm]{nn.m}

(b) Write a MATLAB function with header

function net = approximator(f, T)

that takes a handle f of a function from the real interval [0, 1] to the reals with header

function y = f(x)

and can take a vector x of inputs and simultaneously compute the vector y of corresponding outputs. The second argument to
approximator is a sampling period 0 < T ≤ 1. The function approximator returns a two-layer network that computes
a piecewise linear approximation of f using the ReLU nonlinearity in the first layer and the identity in the second. There are K
linear pieces, defined on regularly spaced intervals of width at most T. The first sample should be at x = 0 and the last at x = 1.
The commands

N = 101;
T = 0.05;
f = @(x) exp(x) .* sin(3* pi * x);
net = approximator(f, T);
x = linspace(0, 1, N);
y = nn(x, net);
clf
plot(x, f(x), 'b')
hold on
plot(x, y, 'r')

should display the actual function f in blue and its piecewise linear approximation in red. Hand in your code for approximator
and the diagram produced by the commands above. Your diagram should have a legend that distinguishes the two plots and a
title or caption that states how many weights (including both gains and biases, regardless of whether they are zero or not) are in
your network.

COMPSCI 527 — Duke — October 26, 2015

(c) Write the simplest possible formula for the number nw of weights as a function of the number K of linear pieces in the approxi-
mation of f.

2. Let us for now restrict our attention to convolutional neural nets. For inputs, we still only consider one-dimensional signals, that
is, vectors x ∈ Rm, rather than images. Convolution kernels are then one-dimensional as well, but there can be several kernels in each
layer. A feature map in such a net is obtained through the following computation:

y(x) = h(a(x)) where a(x) = x ∗v k+ b

where the input x is a column vector of m real numbers, the convolution kernel k is a column vector of n real numbers, the symbol
‘∗v’ (obtained in a LATEX math environment with the command \ast_v) denotes convolution computed with the MATLAB 'valid'
option, the scalar b is the map’s bias and is added to each component of x ∗v k, and the activation function h is a nonlinear function
from R to R applied to each element of the activation a(x). The activation map a(x) is a column vector of the same length p as the
output feature map y(x).

We make one modification to the meaning of the 'valid' option relative to its MATLAB meaning, to preserve commutativity of
convolution. Specifically, if vector c is no longer than vector d, then

c ∗v d corresponds to conv(d, c, 'valid ') in MATLAB.

In words, the longer vector comes first when the 'valid' option is evaluated in conv (or convn).
Given a training sample (xn,yn) where xn is an input and yn is a feature, the error of the feature map is a nonnegative real number

computed as
e = L(yn,y(xn))

where L : Rp × Rp → R+ is a loss function. For simplicity in this and similar expressions in the future we drop the subscript n from
e. Assume both L and h to be differentiable for the purpose of this exercise.

(a) What is p as a function of m and n? Here and elsewhere in this problem, assume that m ≥ n.

(b) When computing gradients by back-propagation, we need the derivatives of the error e with respect to the input x and the param-
eters k and b of any given layer. Let

ea =

∂e
∂a1

...
∂e
∂ap

be the column vector that gathers the derivatives of the error e with respect to the entries of the activation a, so that the column
vector that collects the derivatives of e with respect of x,

ex =

∂e
∂x1

...
∂e

∂xm

can be written as follows by applying the chain rule of differentiation:

ex = AT
x ea .

In this expression, the p×m matrix

Ax =

∂a1

∂x1
· · · ∂a1

∂xm

...
...

∂ap

∂x1
· · · ∂ap

∂xm

is called the Jacobian of the activation a with respect to the input x.

Show by example with m = 7 and n = 3 that
ex = ea ∗f ρ(k)

where the symbol ‘∗f ’ denotes convolution computed with the MATLAB 'full' option and ρ(k) denotes the convolution
kernel k with its entries listed in reverse order (in MATLAB, this would be k(end:-1:1)).

Specifically, let
x = [x1, . . . , x7]

T , k = [k1, . . . , k3]
T and a = [a1, . . . , ap]

T

COMPSCI 527 — Duke — October 26, 2015

(for a suitable value of p) and write out all the entries of the ‘valid’ convolution matrix Cv(k) such that

Cv(k) x = x ∗v k

as you did in a previous homework assignment. Then write out all the entries of the ‘full’ convolution matrix Cf (ρ(k)) such
that

Cf (ρ(k)) a = a ∗f ρ(k)

and conclude by showing how these matrices tie together the two expressions for ex given above. Leave zero entries blank in your
matrices.

(c) For any matrix or column vector v, let
s = σr(v, s) = v(1 : s : end, :)

be a row-sampling operator. The integer argument s ≥ 1 is called the stride, and the output vector s retains all entries that are in
rows 1, 1 + s, 1 + 2s, . . . in v. For instance,

σr(

1
2
3
4
5
6
7
8

, 3) =

 1
4
7

A feature map with stride s is then equivalent to the following computation:

y(x) = h(σr(a(x), s))

where the meaning of h and a is the same as before.1

Continue the example from part (b) with the same values of m and n and with s = 2 to verify that if stride is included then
ea is now shorter, and

ex = δ(ea, p) ∗f ρ(k)

where d = δ(u, p) takes a vector u of length q ≤ p and dilutes it into a vector d of length p that has the entries u1, . . . , uq in
positions 1, 1 + s, 1 + 2s, . . . , 1 + (q − 1)s where

s =

⌈
p

q

⌉
.

The vector d is elsewhere zero. For instance, if

u =

 1
2
3

then if p = 8 we have s = d8/3e = 3 and

δ(u, 8) =

1
0
0
2
0
0
3
0

.

3. Let us extend and consolidate what we learned in the previous problem, and relate it to back-propagation. Switching the role of x and
k in the results you verified in the previous problem and invoking the commutative nature of convolution yields a similar relationship
for the gradient with respect to k for stride s:

ek = µ(δ(ea, p) ∗f ρ(x), n) .

1It would be inefficient to compute y in this way, because one would first compute all values of a and then discard s− 1 out of every s. Nonetheless, the mathematical
expression above describes the input/output relationship correctly. Also, in this assignment we can afford this inefficiency.

COMPSCI 527 — Duke — October 26, 2015

The function µ(u, n) takes a column vector u whose length q is an even number plus n and returns a column vector that contains the n
elements in the middle of u. The convolution that is input to this function has length

q = p+m− 1 = m− n+ 1 +m− 1 = 2m− n = 2(m− n) + n

and therefore satisfies the requirement above. We are now ready to put everything together into the formulation of a back-propagation
algorithm for convolutional nets.

Superscripts in the back-propagation equations simplify if we call x(`) the input to layer ` and y(`) the output to layer `. In addition,
layer ` can have j(`) kernels and biases, so that the feature maps x(`) and y(`) are in general matrices with j(`) columns (one column per
feature map), and so are the activation maps a(`). We then use subscript (`, j) to denote the j-th kernel, bias, feature map, or activation
map in layer `. If we assume for simplicity that input x and output y of the net as a whole are vectors, we then have

x(1,1) = x

y(`,j) = x(`+1,j) for ` = 1, . . . , L− 1 and j = 1, . . . , j(`)

y(L,1) = y

as illustrated in Figure 1 for L = 3 layers and j(`) = 1 for all `. With this notation, and taking into account the results in the previous
problem, back-propagation can be rewritten as follows for a purely convolutional net where all the kernels in the same layer have the
same size:

ey(L,1) =
∂L
∂y

for ` = L, . . . , 1 and j = j(`), . . . , 1 :

ea(`,j) = ey(`,j) �
dh

a(`,j)

ex(`) =
∑
j′

δ(ea(`,j′) , p(`)) ∗f ρ(k(`,j′))

ew(`,j) =

[
ek(`,j)(:)
eb(`,j)

]
where ek(`,j) = µ(δ(ea(`,j) , p(`)) ∗f ρ(x(`)), n) and eb(`,j) =

∑
r

ea(`,j)(r)

The symbol ‘�’ (‘\odot’ in LATEX) denotes entry-by-entry multiplication (‘.*’ in MATLAB), and the notation

dh

a(`,j)
=

dh
da

∣∣
a=a

(`,j)
1

...
dh
da

∣∣
a=a

(`,j)

D(`)

denotes a column vector with the values of the derivative of h with respect to its (scalar) argument computed at the activation j in layer
`. For instance, if h is the ReLU, this vector has a 1 where the activation is positive and a zero where the activation is zero or negative.
The term eb(`,j) is the derivative of the error e with respect to the bias b(`) in layer `, obtained as follows: Dropping the superscripts `
and j for simplicity, we have

eb =
∂e

∂b
=
∑
r

∂e

∂ar

∂ar
∂b

=
∑
r

∂e

∂ar
=
∑
r

ea(`)(r)

where r is a row index. A similar computation yields the expression for ex(`) . The integers p(`) in the expressions above are the lengths
of the convolution outputs, as you computed them in problem 2.

While you verified these expressions for one-dimensional kernels, they also hold for d-dimensional kernels. When d > 1, the ‘ρ’
operator is to be applied to each dimension, while the ‘δ’ and ‘µ’ functions operate on the first dimension of their first arguments only.
When there are j(`) > 1 kernels—and therefore j(`) activation maps—in a layer, the relationships above are to be applied to each of the
kernels (and activation maps) separately.

You will now write code for the back-propagation algorithm for convolutional neural nets in a simple case in which no pooling occurs
and the input, kernel, and output sizes are constrained as follows:2

• The input x is a column vector. Let j(0) = 1, the number of columns in the input.

• Layer ` has j(`) 2-dimensional kernels of size n(`) × j(`−1) for ` = 1, . . . L and stride s(`). There is one scalar bias per kernel.

2This is a simplification relative to real networks, which include pooling, and have images rather than vectors as inputs. However, this simplification makes the code
manageable for this exercise.

COMPSCI 527 — Duke — October 26, 2015

(1)h h(2) h(3)

w(1) w(2) w(3)

(3)y = y(1)x x= En

ny

L
(1)y = x(2) y = x(2) (3)

Figure 1: Notation used in this assignment for the computation of the error term En for a neural net with L = 3 layers and a single
activation map per layer.

(1)n

(2)n

(3)n

stride s(2)

stride s(3)

stride s(1)

(0)j = 1

(1)j

(2)j
(3)j = 1

y = x(1) (2)

y = x(2) (3)

x = x (1)

y = y(3)

Figure 2: Kernel and feature map block sizes for a neural net with L = 3 layers. The second dimension of each kernel “fills” the second
dimension of the feature map block it is applied to, so that convolution with the 'valid ' option results in a one-dimensional feature
map for each kernel.

• For the last layer, j(L) = 1 (a single, 2-dimensional kernel of size n(L) × j(L−1)).

• As a consequence of the last constraint, the output y from the network is a vector.

All the forward convolutions in the net are computed with the 'valid' option. Since the size j(`−1) of the second dimension of a
kernel in layer ` is equal to the number of feature maps in the previous layer, each kernel computes a one-dimensional (column) feature
map. Figure 2 illustrates for L = 3, using notation similar to that used in A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet
classification with deep convolutional neural networks,” NIPS, 25:1106–1114, 2012, but with a one-dimensional input.

(a) Write a MATLAB function

function [y, x, a] = cnn(x1, net)

that checks if the net satisfies the format requirements below and runs a convolutional neural net whose layers are as described
in the previous problem. The argument net is a net whose format is similar to that in problem 1, but with the following fields for
layer `:

• kernel is an n(`) × j(`−1) × j(`) array that represents j(`) kernels of size n(`) × j(`−1).

• bias is a row vector with j(`) scalar entries, one per kernel.

• stride is a positive integer scalar.

• h is a handle to a function that computes the nonlinearity for that layer, and its derivative.

COMPSCI 527 — Duke — October 26, 2015

More specifically, the function with handle h is expected to have a header with the following format:

function [y, dhda] = h(a)

where y is the output corresponding to input a and dhda is the derivative of h at a. This function should behave like in problem
1 (and for both output arguments) as far as multiple inputs are concerned. The function ReLU provided with this assignment is an
example of such a function.

The output from each layer is a matrix each of whose columns is a feature map. The argument x1 is the input to the net—a single
column vector—so the output from the first layer is a p(1)×j(1) array (see Figure 2) for a suitable value of p(1). The input to layers
after the first is in general a matrix, and the output from that layer is the result of applying every kernel in the layer to the input
array. Each application returns a single column of the output feature map. It is OK to loop explicitly over kernels (and therefore
output feature-map columns) in your code.

The output argument y from cnn is the output from the last layer of the net, and is a vector because of the constraints imposed
on the kernel sizes for this problem. The output arguments x and a from cnn are L × 1 cell arrays for a net with L layers, and
store intermediate quantities that will be needed for back-propagation. Specifically, cell x{`} is the input matrix to layer `, and
cell a{`} is the activation matrix in layer `.

Hand in your code for the function cnn, as well as the value of the error e and a printout of the entries of the vector y that
result from running the following code:

load test
y = cnn(xn, convnet);
e = norm(yn - y)ˆ2;

The net convnet stored in the file test.mat provided with this assignment does not output the desired output yn, so you
should not expect a zero (or even a small) error. We know what results to expect, so this test is a simple sanity check we will use
for your code.

PROGRAMMING NOTES.

• If you say load test once you downloaded the assignment and placed the code in your working MATLAB directory, a
sample net shows up in a variable called convnet, a sample input shows up in the variable xn, and a sample desired output
shows up as yn (so (xn, yn) can be viewed as a training sample). The sample net satisfies all the size constraints.

• The function ok provided with this assignment takes a net and returns true if the net satisfies the format requirements listed
above. Otherwise, it issues an error with an explanation.

• It is of course fine to use the function ok in your code.

• The function square is provided with this assignment.

• Pay close attention to the sizes of the matrix x{`} and of the three-dimensional array kernel in each layer: The second
dimension of kernel is equal to the number of feature maps in the previous layer, and therefore to the second dimension
of the input x{`} to the current layer. The third dimension of kernel is equal to the number of feature maps computed by
the current layer and therefore to the second dimension of the output x{`+ 1} from the current layer (for ` = L, the output
from the layer is y). Figure 2 may help clarify these relationships.

• It is fine to implement stride by first computing the convolution with stride 1, and then sampling the result.

• Use convn for multidimensional convolutions.

(b) Write a MATLAB function

function [g, e] = backprop(net, loss, xn, yn)

that uses back-propagation and the convolution results stated earlier to compute the gradient g and the value e of the error of a
convolutional net with respect to all the parameters of the net. The argument yn is the desired output, taken from the training set,
and loss is a handle to a function with header

function [e, ey] = loss(yn, y)

COMPSCI 527 — Duke — October 26, 2015

that returns the error e and the derivative of the loss function with respect to y for the training sample yn. The other input
arguments to backprop are as in part (a). The network net may have any number of layers, but all the layers are of the format
described in part (a).
Your output g is a column vector. For each layer `, starting with ` = 1, the vector g lists the gradient with respect to kernel 1, then
to bias 1, then to kernel 2, then to bias 2, . . ., then to kernel j(`), then to bias j(`). To clarify, you may want to look at the function
weights provided with this assignment, which returns a column vector of all the weights in a convolutional net. Hand in your
code.
PROGRAMMING NOTES.

• The goal of this exercise is to help you work through the details of writing a back-propagation routine. You will succeed if
you patiently replicate the expressions given in the preamble to this problem.

• As a useful sanity check for your code, note that eblah for any value of blah is the derivative of a scalar (the error e = En for
a single training sample) with respect to blah, and therefore has the same shape and size as blah. For instance, ek(`)(:, :, j)
is an array of size n(`) × j(`−1), and ew(`) is a column vector.

• MATLAB functions reverse, dilute, and middle, which implement operators ρ, δ, and µ respectively, are provided
with this assignment.

(c) Writing differentiation code is error-prone, so it is good to check your results against those obtained with a slower and less accurate
but simpler method for computing derivatives, namely, numeric differentiation. Given a function e(w), numeric differentiation is
based on an approximation of the definition of derivative:

ew(i) =
∂e

∂wi
≈ e(w + di)− e(w)

d

where d is a small positive number and di is a vector as long as w that has d in its i-th position and zero everywhere else. To
compute the gradient, loop over all entries of w and compute the value in the right-hand side of the expression above.
Write a MATLAB function with header

function [g, e] = numeric(net, loss, xn, yn)

that uses numeric differentiation with d = 10−6 to compute the gradient g and value e of the errorEn with the given convolutional
net and loss function for the given training sample (xn, yn). The argument loss is the same as in part (b).
Hand in your code.
PROGRAMMING NOTE. You can change the weights in network net by saying

w = weights(net);
w = ...;
net = setWeights(w, net);

where weights and setWeights are functions provided with this assignment and the dots represent code you write.

(d) Evaluate the norm of the difference between the analytically and numerically computed gradients for our running example as
follows:

load test
gb = backprop(convnet, @ee2, xn, yn);
gn = numeric(convnet, @ee2, xn, yn);
dg = gb - gn;
ndg = norm(dg) / mean([norm(gn), norm(gb)]);

where ee2 is a function that computes value and gradient (relative to y) of the loss function

L(yn,y) = ‖yn − y‖2 .
This is the squared Euclidean norm of the vector difference between the output y from the whole net and the training sample
output yn.
The network convnet comes initialized with parameter values, so your derivatives are computed at those values. The resulting
discrepancy ndg will be greater than zero because of the numeric approximations. Hand in the code for your ee2 function,
state the value of ndg you obtain and provide two separate diagrams. The first diagram should show plots of gb and gn
superimposed on each other, in different colors and with appropriate legends. The second should plot the difference vector dg.
PROGRAMMING NOTE. If ndg is large, there is a bug somewhere in your code. One way to debug it is to make a tiny net with
perhaps two layers and very small kernels, so you can compute derivatives by hand and compare with what your code does.

COMPSCI 527 — Duke — October 26, 2015

